MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txval Structured version   Unicode version

Theorem txval 19933
Description: Value of the binary topological product operation. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 30-Aug-2015.)
Hypothesis
Ref Expression
txval.1  |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
Assertion
Ref Expression
txval  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen `  B ) )
Distinct variable groups:    x, y, R    x, S, y
Allowed substitution hints:    B( x, y)    V( x, y)    W( x, y)

Proof of Theorem txval
Dummy variables  r 
s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3127 . 2  |-  ( R  e.  V  ->  R  e.  _V )
2 elex 3127 . 2  |-  ( S  e.  W  ->  S  e.  _V )
3 mpt2eq12 6352 . . . . . 6  |-  ( ( r  =  R  /\  s  =  S )  ->  ( x  e.  r ,  y  e.  s 
|->  ( x  X.  y
) )  =  ( x  e.  R , 
y  e.  S  |->  ( x  X.  y ) ) )
43rneqd 5236 . . . . 5  |-  ( ( r  =  R  /\  s  =  S )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) ) )
5 txval.1 . . . . 5  |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
64, 5syl6eqr 2526 . . . 4  |-  ( ( r  =  R  /\  s  =  S )  ->  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) )  =  B )
76fveq2d 5876 . . 3  |-  ( ( r  =  R  /\  s  =  S )  ->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) )  =  ( topGen `  B ) )
8 df-tx 19931 . . 3  |-  tX  =  ( r  e.  _V ,  s  e.  _V  |->  ( topGen `  ran  ( x  e.  r ,  y  e.  s  |->  ( x  X.  y ) ) ) )
9 fvex 5882 . . 3  |-  ( topGen `  B )  e.  _V
107, 8, 9ovmpt2a 6428 . 2  |-  ( ( R  e.  _V  /\  S  e.  _V )  ->  ( R  tX  S
)  =  ( topGen `  B ) )
111, 2, 10syl2an 477 1  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen `  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767   _Vcvv 3118    X. cxp 5003   ran crn 5006   ` cfv 5594  (class class class)co 6295    |-> cmpt2 6297   topGenctg 14710    tX ctx 19929
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pr 4692
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-iota 5557  df-fun 5596  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-tx 19931
This theorem is referenced by:  eltx  19937  txtop  19938  txtopon  19960  txopn  19971  txss12  19974  txbasval  19975  txcnp  19989  txcnmpt  19993  txrest  20000  txlm  20017  tx2ndc  20020  txflf  20375  mbfimaopnlem  21930
  Copyright terms: Public domain W3C validator