MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txuni2 Unicode version

Theorem txuni2 17550
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 31-Aug-2015.)
Hypotheses
Ref Expression
txval.1  |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
txuni2.1  |-  X  = 
U. R
txuni2.2  |-  Y  = 
U. S
Assertion
Ref Expression
txuni2  |-  ( X  X.  Y )  = 
U. B
Distinct variable groups:    x, y, R    x, S, y    x, X, y    x, Y, y
Allowed substitution hints:    B( x, y)

Proof of Theorem txuni2
Dummy variables  r 
s  z  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relxp 4942 . . 3  |-  Rel  ( X  X.  Y )
2 txuni2.1 . . . . . . . 8  |-  X  = 
U. R
32eleq2i 2468 . . . . . . 7  |-  ( z  e.  X  <->  z  e.  U. R )
4 eluni2 3979 . . . . . . 7  |-  ( z  e.  U. R  <->  E. r  e.  R  z  e.  r )
53, 4bitri 241 . . . . . 6  |-  ( z  e.  X  <->  E. r  e.  R  z  e.  r )
6 txuni2.2 . . . . . . . 8  |-  Y  = 
U. S
76eleq2i 2468 . . . . . . 7  |-  ( w  e.  Y  <->  w  e.  U. S )
8 eluni2 3979 . . . . . . 7  |-  ( w  e.  U. S  <->  E. s  e.  S  w  e.  s )
97, 8bitri 241 . . . . . 6  |-  ( w  e.  Y  <->  E. s  e.  S  w  e.  s )
105, 9anbi12i 679 . . . . 5  |-  ( ( z  e.  X  /\  w  e.  Y )  <->  ( E. r  e.  R  z  e.  r  /\  E. s  e.  S  w  e.  s ) )
11 opelxp 4867 . . . . 5  |-  ( <.
z ,  w >.  e.  ( X  X.  Y
)  <->  ( z  e.  X  /\  w  e.  Y ) )
12 reeanv 2835 . . . . 5  |-  ( E. r  e.  R  E. s  e.  S  (
z  e.  r  /\  w  e.  s )  <->  ( E. r  e.  R  z  e.  r  /\  E. s  e.  S  w  e.  s ) )
1310, 11, 123bitr4i 269 . . . 4  |-  ( <.
z ,  w >.  e.  ( X  X.  Y
)  <->  E. r  e.  R  E. s  e.  S  ( z  e.  r  /\  w  e.  s ) )
14 opelxp 4867 . . . . . 6  |-  ( <.
z ,  w >.  e.  ( r  X.  s
)  <->  ( z  e.  r  /\  w  e.  s ) )
15 eqid 2404 . . . . . . . . . 10  |-  ( r  X.  s )  =  ( r  X.  s
)
16 xpeq1 4851 . . . . . . . . . . . 12  |-  ( x  =  r  ->  (
x  X.  y )  =  ( r  X.  y ) )
1716eqeq2d 2415 . . . . . . . . . . 11  |-  ( x  =  r  ->  (
( r  X.  s
)  =  ( x  X.  y )  <->  ( r  X.  s )  =  ( r  X.  y ) ) )
18 xpeq2 4852 . . . . . . . . . . . 12  |-  ( y  =  s  ->  (
r  X.  y )  =  ( r  X.  s ) )
1918eqeq2d 2415 . . . . . . . . . . 11  |-  ( y  =  s  ->  (
( r  X.  s
)  =  ( r  X.  y )  <->  ( r  X.  s )  =  ( r  X.  s ) ) )
2017, 19rspc2ev 3020 . . . . . . . . . 10  |-  ( ( r  e.  R  /\  s  e.  S  /\  ( r  X.  s
)  =  ( r  X.  s ) )  ->  E. x  e.  R  E. y  e.  S  ( r  X.  s
)  =  ( x  X.  y ) )
2115, 20mp3an3 1268 . . . . . . . . 9  |-  ( ( r  e.  R  /\  s  e.  S )  ->  E. x  e.  R  E. y  e.  S  ( r  X.  s
)  =  ( x  X.  y ) )
22 vex 2919 . . . . . . . . . . 11  |-  r  e. 
_V
23 vex 2919 . . . . . . . . . . 11  |-  s  e. 
_V
2422, 23xpex 4949 . . . . . . . . . 10  |-  ( r  X.  s )  e. 
_V
25 eqeq1 2410 . . . . . . . . . . 11  |-  ( z  =  ( r  X.  s )  ->  (
z  =  ( x  X.  y )  <->  ( r  X.  s )  =  ( x  X.  y ) ) )
26252rexbidv 2709 . . . . . . . . . 10  |-  ( z  =  ( r  X.  s )  ->  ( E. x  e.  R  E. y  e.  S  z  =  ( x  X.  y )  <->  E. x  e.  R  E. y  e.  S  ( r  X.  s )  =  ( x  X.  y ) ) )
27 txval.1 . . . . . . . . . . 11  |-  B  =  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
28 eqid 2404 . . . . . . . . . . . 12  |-  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )  =  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) )
2928rnmpt2 6139 . . . . . . . . . . 11  |-  ran  (
x  e.  R , 
y  e.  S  |->  ( x  X.  y ) )  =  { z  |  E. x  e.  R  E. y  e.  S  z  =  ( x  X.  y ) }
3027, 29eqtri 2424 . . . . . . . . . 10  |-  B  =  { z  |  E. x  e.  R  E. y  e.  S  z  =  ( x  X.  y ) }
3124, 26, 30elab2 3045 . . . . . . . . 9  |-  ( ( r  X.  s )  e.  B  <->  E. x  e.  R  E. y  e.  S  ( r  X.  s )  =  ( x  X.  y ) )
3221, 31sylibr 204 . . . . . . . 8  |-  ( ( r  e.  R  /\  s  e.  S )  ->  ( r  X.  s
)  e.  B )
33 elssuni 4003 . . . . . . . 8  |-  ( ( r  X.  s )  e.  B  ->  (
r  X.  s ) 
C_  U. B )
3432, 33syl 16 . . . . . . 7  |-  ( ( r  e.  R  /\  s  e.  S )  ->  ( r  X.  s
)  C_  U. B )
3534sseld 3307 . . . . . 6  |-  ( ( r  e.  R  /\  s  e.  S )  ->  ( <. z ,  w >.  e.  ( r  X.  s )  ->  <. z ,  w >.  e.  U. B
) )
3614, 35syl5bir 210 . . . . 5  |-  ( ( r  e.  R  /\  s  e.  S )  ->  ( ( z  e.  r  /\  w  e.  s )  ->  <. z ,  w >.  e.  U. B
) )
3736rexlimivv 2795 . . . 4  |-  ( E. r  e.  R  E. s  e.  S  (
z  e.  r  /\  w  e.  s )  -> 
<. z ,  w >.  e. 
U. B )
3813, 37sylbi 188 . . 3  |-  ( <.
z ,  w >.  e.  ( X  X.  Y
)  ->  <. z ,  w >.  e.  U. B
)
391, 38relssi 4926 . 2  |-  ( X  X.  Y )  C_  U. B
40 elssuni 4003 . . . . . . . . . 10  |-  ( x  e.  R  ->  x  C_ 
U. R )
4140, 2syl6sseqr 3355 . . . . . . . . 9  |-  ( x  e.  R  ->  x  C_  X )
42 elssuni 4003 . . . . . . . . . 10  |-  ( y  e.  S  ->  y  C_ 
U. S )
4342, 6syl6sseqr 3355 . . . . . . . . 9  |-  ( y  e.  S  ->  y  C_  Y )
44 xpss12 4940 . . . . . . . . 9  |-  ( ( x  C_  X  /\  y  C_  Y )  -> 
( x  X.  y
)  C_  ( X  X.  Y ) )
4541, 43, 44syl2an 464 . . . . . . . 8  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( x  X.  y
)  C_  ( X  X.  Y ) )
46 vex 2919 . . . . . . . . . 10  |-  x  e. 
_V
47 vex 2919 . . . . . . . . . 10  |-  y  e. 
_V
4846, 47xpex 4949 . . . . . . . . 9  |-  ( x  X.  y )  e. 
_V
4948elpw 3765 . . . . . . . 8  |-  ( ( x  X.  y )  e.  ~P ( X  X.  Y )  <->  ( x  X.  y )  C_  ( X  X.  Y ) )
5045, 49sylibr 204 . . . . . . 7  |-  ( ( x  e.  R  /\  y  e.  S )  ->  ( x  X.  y
)  e.  ~P ( X  X.  Y ) )
5150rgen2 2762 . . . . . 6  |-  A. x  e.  R  A. y  e.  S  ( x  X.  y )  e.  ~P ( X  X.  Y
)
5228fmpt2 6377 . . . . . 6  |-  ( A. x  e.  R  A. y  e.  S  (
x  X.  y )  e.  ~P ( X  X.  Y )  <->  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) ) : ( R  X.  S
) --> ~P ( X  X.  Y ) )
5351, 52mpbi 200 . . . . 5  |-  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) ) : ( R  X.  S ) --> ~P ( X  X.  Y )
54 frn 5556 . . . . 5  |-  ( ( x  e.  R , 
y  e.  S  |->  ( x  X.  y ) ) : ( R  X.  S ) --> ~P ( X  X.  Y
)  ->  ran  ( x  e.  R ,  y  e.  S  |->  ( x  X.  y ) ) 
C_  ~P ( X  X.  Y ) )
5553, 54ax-mp 8 . . . 4  |-  ran  (
x  e.  R , 
y  e.  S  |->  ( x  X.  y ) )  C_  ~P ( X  X.  Y )
5627, 55eqsstri 3338 . . 3  |-  B  C_  ~P ( X  X.  Y
)
57 sspwuni 4136 . . 3  |-  ( B 
C_  ~P ( X  X.  Y )  <->  U. B  C_  ( X  X.  Y
) )
5856, 57mpbi 200 . 2  |-  U. B  C_  ( X  X.  Y
)
5939, 58eqssi 3324 1  |-  ( X  X.  Y )  = 
U. B
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1721   {cab 2390   A.wral 2666   E.wrex 2667    C_ wss 3280   ~Pcpw 3759   <.cop 3777   U.cuni 3975    X. cxp 4835   ran crn 4838   -->wf 5409    e. cmpt2 6042
This theorem is referenced by:  txbasex  17551  txtopon  17576  sxsigon  24499
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-op 3783  df-uni 3976  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-id 4458  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-fv 5421  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309
  Copyright terms: Public domain W3C validator