MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtube Structured version   Visualization version   Unicode version

Theorem txtube 20710
Description: The "tube lemma". If  X is compact and there is an open set  U containing the line  X  X.  { A }, then there is a "tube"  X  X.  u for some neighborhood  u of  A which is entirely contained within  U. (Contributed by Mario Carneiro, 21-Mar-2015.)
Hypotheses
Ref Expression
txtube.x  |-  X  = 
U. R
txtube.y  |-  Y  = 
U. S
txtube.r  |-  ( ph  ->  R  e.  Comp )
txtube.s  |-  ( ph  ->  S  e.  Top )
txtube.w  |-  ( ph  ->  U  e.  ( R 
tX  S ) )
txtube.u  |-  ( ph  ->  ( X  X.  { A } )  C_  U
)
txtube.a  |-  ( ph  ->  A  e.  Y )
Assertion
Ref Expression
txtube  |-  ( ph  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
)
Distinct variable groups:    u, A    u, R    u, S    u, Y    ph, u    u, U    u, X

Proof of Theorem txtube
Dummy variables  t 
f  v  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txtube.r . . 3  |-  ( ph  ->  R  e.  Comp )
2 txtube.u . . . . . . . 8  |-  ( ph  ->  ( X  X.  { A } )  C_  U
)
32adantr 471 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  ( X  X.  { A }
)  C_  U )
4 id 22 . . . . . . . 8  |-  ( x  e.  X  ->  x  e.  X )
5 txtube.a . . . . . . . . 9  |-  ( ph  ->  A  e.  Y )
6 snidg 4006 . . . . . . . . 9  |-  ( A  e.  Y  ->  A  e.  { A } )
75, 6syl 17 . . . . . . . 8  |-  ( ph  ->  A  e.  { A } )
8 opelxpi 4888 . . . . . . . 8  |-  ( ( x  e.  X  /\  A  e.  { A } )  ->  <. x ,  A >.  e.  ( X  X.  { A }
) )
94, 7, 8syl2anr 485 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  <. x ,  A >.  e.  ( X  X.  { A }
) )
103, 9sseldd 3445 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  <. x ,  A >.  e.  U
)
11 txtube.w . . . . . . . 8  |-  ( ph  ->  U  e.  ( R 
tX  S ) )
12 txtube.s . . . . . . . . 9  |-  ( ph  ->  S  e.  Top )
13 eltx 20638 . . . . . . . . 9  |-  ( ( R  e.  Comp  /\  S  e.  Top )  ->  ( U  e.  ( R  tX  S )  <->  A. y  e.  U  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
) ) )
141, 12, 13syl2anc 671 . . . . . . . 8  |-  ( ph  ->  ( U  e.  ( R  tX  S )  <->  A. y  e.  U  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  U
) ) )
1511, 14mpbid 215 . . . . . . 7  |-  ( ph  ->  A. y  e.  U  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  U
) )
1615adantr 471 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  A. y  e.  U  E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
) )
17 eleq1 2528 . . . . . . . . 9  |-  ( y  =  <. x ,  A >.  ->  ( y  e.  ( u  X.  v
)  <->  <. x ,  A >.  e.  ( u  X.  v ) ) )
1817anbi1d 716 . . . . . . . 8  |-  ( y  =  <. x ,  A >.  ->  ( ( y  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  U )  <->  ( <. x ,  A >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  U
) ) )
19182rexbidv 2920 . . . . . . 7  |-  ( y  =  <. x ,  A >.  ->  ( E. u  e.  R  E. v  e.  S  ( y  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  E. u  e.  R  E. v  e.  S  ( <. x ,  A >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  U ) ) )
2019rspcv 3158 . . . . . 6  |-  ( <.
x ,  A >.  e.  U  ->  ( A. y  e.  U  E. u  e.  R  E. v  e.  S  (
y  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  U )  ->  E. u  e.  R  E. v  e.  S  ( <. x ,  A >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  U ) ) )
2110, 16, 20sylc 62 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  E. u  e.  R  E. v  e.  S  ( <. x ,  A >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  U
) )
22 opelxp 4886 . . . . . . . . . 10  |-  ( <.
x ,  A >.  e.  ( u  X.  v
)  <->  ( x  e.  u  /\  A  e.  v ) )
2322anbi1i 706 . . . . . . . . 9  |-  ( (
<. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  ( ( x  e.  u  /\  A  e.  v )  /\  (
u  X.  v ) 
C_  U ) )
24 anass 659 . . . . . . . . 9  |-  ( ( ( x  e.  u  /\  A  e.  v
)  /\  ( u  X.  v )  C_  U
)  <->  ( x  e.  u  /\  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
2523, 24bitri 257 . . . . . . . 8  |-  ( (
<. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  ( x  e.  u  /\  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
2625rexbii 2901 . . . . . . 7  |-  ( E. v  e.  S  (
<. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  E. v  e.  S  ( x  e.  u  /\  ( A  e.  v  /\  ( u  X.  v )  C_  U
) ) )
27 r19.42v 2957 . . . . . . 7  |-  ( E. v  e.  S  ( x  e.  u  /\  ( A  e.  v  /\  ( u  X.  v
)  C_  U )
)  <->  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
2826, 27bitri 257 . . . . . 6  |-  ( E. v  e.  S  (
<. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
2928rexbii 2901 . . . . 5  |-  ( E. u  e.  R  E. v  e.  S  ( <. x ,  A >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  U
)  <->  E. u  e.  R  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  ( u  X.  v
)  C_  U )
) )
3021, 29sylib 201 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  E. u  e.  R  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  (
u  X.  v ) 
C_  U ) ) )
3130ralrimiva 2814 . . 3  |-  ( ph  ->  A. x  e.  X  E. u  e.  R  ( x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  ( u  X.  v
)  C_  U )
) )
32 txtube.x . . . 4  |-  X  = 
U. R
33 eleq2 2529 . . . . 5  |-  ( v  =  ( f `  u )  ->  ( A  e.  v  <->  A  e.  ( f `  u
) ) )
34 xpeq2 4871 . . . . . 6  |-  ( v  =  ( f `  u )  ->  (
u  X.  v )  =  ( u  X.  ( f `  u
) ) )
3534sseq1d 3471 . . . . 5  |-  ( v  =  ( f `  u )  ->  (
( u  X.  v
)  C_  U  <->  ( u  X.  ( f `  u
) )  C_  U
) )
3633, 35anbi12d 722 . . . 4  |-  ( v  =  ( f `  u )  ->  (
( A  e.  v  /\  ( u  X.  v )  C_  U
)  <->  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) )
3732, 36cmpcovf 20461 . . 3  |-  ( ( R  e.  Comp  /\  A. x  e.  X  E. u  e.  R  (
x  e.  u  /\  E. v  e.  S  ( A  e.  v  /\  ( u  X.  v
)  C_  U )
) )  ->  E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U ) ) ) )
381, 31, 37syl2anc 671 . 2  |-  ( ph  ->  E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U ) ) ) )
39 rint0 4289 . . . . . . . . . 10  |-  ( ran  f  =  (/)  ->  ( Y  i^i  |^| ran  f )  =  Y )
4039adantl 472 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =  (/) )  ->  ( Y  i^i  |^| ran  f )  =  Y )
41 txtube.y . . . . . . . . . . . 12  |-  Y  = 
U. S
4241topopn 19991 . . . . . . . . . . 11  |-  ( S  e.  Top  ->  Y  e.  S )
4312, 42syl 17 . . . . . . . . . 10  |-  ( ph  ->  Y  e.  S )
4443ad3antrrr 741 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =  (/) )  ->  Y  e.  S )
4540, 44eqeltrd 2540 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =  (/) )  ->  ( Y  i^i  |^| ran  f )  e.  S )
4612ad3antrrr 741 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  S  e. 
Top )
47 simprrl 779 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  f : t --> S )
48 frn 5762 . . . . . . . . . . . . . . 15  |-  ( f : t --> S  ->  ran  f  C_  S )
4947, 48syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ran  f  C_  S )
5049adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ran  f  C_  S )
51 simpr 467 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ran  f  =/=  (/) )
52 inss2 3665 . . . . . . . . . . . . . . . 16  |-  ( ~P R  i^i  Fin )  C_ 
Fin
53 simplr 767 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  t  e.  ( ~P R  i^i  Fin ) )
5452, 53sseldi 3442 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  t  e.  Fin )
55 ffn 5755 . . . . . . . . . . . . . . . . 17  |-  ( f : t --> S  -> 
f  Fn  t )
5647, 55syl 17 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  f  Fn  t
)
57 dffn4 5826 . . . . . . . . . . . . . . . 16  |-  ( f  Fn  t  <->  f :
t -onto-> ran  f )
5856, 57sylib 201 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  f : t
-onto->
ran  f )
59 fofi 7891 . . . . . . . . . . . . . . 15  |-  ( ( t  e.  Fin  /\  f : t -onto-> ran  f
)  ->  ran  f  e. 
Fin )
6054, 58, 59syl2anc 671 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ran  f  e.  Fin )
6160adantr 471 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ran  f  e.  Fin )
62 fiinopn 19986 . . . . . . . . . . . . . 14  |-  ( S  e.  Top  ->  (
( ran  f  C_  S  /\  ran  f  =/=  (/)  /\  ran  f  e. 
Fin )  ->  |^| ran  f  e.  S )
)
6362imp 435 . . . . . . . . . . . . 13  |-  ( ( S  e.  Top  /\  ( ran  f  C_  S  /\  ran  f  =/=  (/)  /\  ran  f  e.  Fin )
)  ->  |^| ran  f  e.  S )
6446, 50, 51, 61, 63syl13anc 1278 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  |^| ran  f  e.  S )
65 elssuni 4241 . . . . . . . . . . . 12  |-  ( |^| ran  f  e.  S  ->  |^| ran  f  C_  U. S
)
6664, 65syl 17 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  |^| ran  f  C_  U. S )
6766, 41syl6sseqr 3491 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  |^| ran  f  C_  Y )
68 dfss1 3649 . . . . . . . . . 10  |-  ( |^| ran  f  C_  Y  <->  ( Y  i^i  |^| ran  f )  =  |^| ran  f
)
6967, 68sylib 201 . . . . . . . . 9  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ( Y  i^i  |^| ran  f )  =  |^| ran  f
)
7069, 64eqeltrd 2540 . . . . . . . 8  |-  ( ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  = 
U. t  /\  (
f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  /\  ran  f  =/=  (/) )  ->  ( Y  i^i  |^| ran  f )  e.  S )
7145, 70pm2.61dane 2723 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( Y  i^i  |^|
ran  f )  e.  S )
725ad2antrr 737 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A  e.  Y
)
73 simprrr 780 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A. u  e.  t  ( A  e.  ( f `  u )  /\  ( u  X.  ( f `  u
) )  C_  U
) )
74 simpl 463 . . . . . . . . . . . 12  |-  ( ( A  e.  ( f `
 u )  /\  ( u  X.  (
f `  u )
)  C_  U )  ->  A  e.  ( f `
 u ) )
7574ralimi 2793 . . . . . . . . . . 11  |-  ( A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U )  ->  A. u  e.  t  A  e.  ( f `  u ) )
7673, 75syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A. u  e.  t  A  e.  ( f `
 u ) )
77 eliin 4298 . . . . . . . . . . 11  |-  ( A  e.  Y  ->  ( A  e.  |^|_ u  e.  t  ( f `  u )  <->  A. u  e.  t  A  e.  ( f `  u
) ) )
7872, 77syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( A  e. 
|^|_ u  e.  t 
( f `  u
)  <->  A. u  e.  t  A  e.  ( f `
 u ) ) )
7976, 78mpbird 240 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A  e.  |^|_ u  e.  t  ( f `
 u ) )
80 fniinfv 5952 . . . . . . . . . 10  |-  ( f  Fn  t  ->  |^|_ u  e.  t  ( f `  u )  =  |^| ran  f )
8156, 80syl 17 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  |^|_ u  e.  t  ( f `  u
)  =  |^| ran  f )
8279, 81eleqtrd 2542 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A  e.  |^| ran  f )
8372, 82elind 3630 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A  e.  ( Y  i^i  |^| ran  f ) )
84 simprl 769 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  X  =  U. t )
85 uniiun 4345 . . . . . . . . . . 11  |-  U. t  =  U_ u  e.  t  u
8684, 85syl6eq 2512 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  X  =  U_ u  e.  t  u
)
8786xpeq1d 4879 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( X  X.  ( Y  i^i  |^| ran  f ) )  =  ( U_ u  e.  t  u  X.  ( Y  i^i  |^| ran  f ) ) )
88 xpiundir 4912 . . . . . . . . 9  |-  ( U_ u  e.  t  u  X.  ( Y  i^i  |^| ran  f ) )  = 
U_ u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )
8987, 88syl6eq 2512 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( X  X.  ( Y  i^i  |^| ran  f ) )  = 
U_ u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) ) )
90 simpr 467 . . . . . . . . . . . 12  |-  ( ( A  e.  ( f `
 u )  /\  ( u  X.  (
f `  u )
)  C_  U )  ->  ( u  X.  (
f `  u )
)  C_  U )
9190ralimi 2793 . . . . . . . . . . 11  |-  ( A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U )  ->  A. u  e.  t 
( u  X.  (
f `  u )
)  C_  U )
9273, 91syl 17 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A. u  e.  t  ( u  X.  (
f `  u )
)  C_  U )
93 inss2 3665 . . . . . . . . . . . . 13  |-  ( Y  i^i  |^| ran  f ) 
C_  |^| ran  f
9480adantr 471 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  t  /\  u  e.  t )  -> 
|^|_ u  e.  t 
( f `  u
)  =  |^| ran  f )
95 iinss2 4344 . . . . . . . . . . . . . . 15  |-  ( u  e.  t  ->  |^|_ u  e.  t  ( f `  u )  C_  (
f `  u )
)
9695adantl 472 . . . . . . . . . . . . . 14  |-  ( ( f  Fn  t  /\  u  e.  t )  -> 
|^|_ u  e.  t 
( f `  u
)  C_  ( f `  u ) )
9794, 96eqsstr3d 3479 . . . . . . . . . . . . 13  |-  ( ( f  Fn  t  /\  u  e.  t )  ->  |^| ran  f  C_  ( f `  u
) )
9893, 97syl5ss 3455 . . . . . . . . . . . 12  |-  ( ( f  Fn  t  /\  u  e.  t )  ->  ( Y  i^i  |^| ran  f )  C_  (
f `  u )
)
99 xpss2 4966 . . . . . . . . . . . 12  |-  ( ( Y  i^i  |^| ran  f )  C_  (
f `  u )  ->  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  ( u  X.  ( f `  u
) ) )
100 sstr2 3451 . . . . . . . . . . . 12  |-  ( ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  ( u  X.  ( f `  u
) )  ->  (
( u  X.  (
f `  u )
)  C_  U  ->  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
)
10198, 99, 1003syl 18 . . . . . . . . . . 11  |-  ( ( f  Fn  t  /\  u  e.  t )  ->  ( ( u  X.  ( f `  u
) )  C_  U  ->  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
)
102101ralimdva 2808 . . . . . . . . . 10  |-  ( f  Fn  t  ->  ( A. u  e.  t 
( u  X.  (
f `  u )
)  C_  U  ->  A. u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
)
10356, 92, 102sylc 62 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  A. u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
104 iunss 4333 . . . . . . . . 9  |-  ( U_ u  e.  t  (
u  X.  ( Y  i^i  |^| ran  f ) )  C_  U  <->  A. u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
105103, 104sylibr 217 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  U_ u  e.  t  ( u  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
10689, 105eqsstrd 3478 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  ( X  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
107 eleq2 2529 . . . . . . . . 9  |-  ( u  =  ( Y  i^i  |^|
ran  f )  -> 
( A  e.  u  <->  A  e.  ( Y  i^i  |^|
ran  f ) ) )
108 xpeq2 4871 . . . . . . . . . 10  |-  ( u  =  ( Y  i^i  |^|
ran  f )  -> 
( X  X.  u
)  =  ( X  X.  ( Y  i^i  |^|
ran  f ) ) )
109108sseq1d 3471 . . . . . . . . 9  |-  ( u  =  ( Y  i^i  |^|
ran  f )  -> 
( ( X  X.  u )  C_  U  <->  ( X  X.  ( Y  i^i  |^| ran  f ) )  C_  U )
)
110107, 109anbi12d 722 . . . . . . . 8  |-  ( u  =  ( Y  i^i  |^|
ran  f )  -> 
( ( A  e.  u  /\  ( X  X.  u )  C_  U )  <->  ( A  e.  ( Y  i^i  |^| ran  f )  /\  ( X  X.  ( Y  i^i  |^|
ran  f ) ) 
C_  U ) ) )
111110rspcev 3162 . . . . . . 7  |-  ( ( ( Y  i^i  |^| ran  f )  e.  S  /\  ( A  e.  ( Y  i^i  |^| ran  f )  /\  ( X  X.  ( Y  i^i  |^|
ran  f ) ) 
C_  U ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
)
11271, 83, 106, 111syl12anc 1274 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
)
113112expr 624 . . . . 5  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  X  =  U. t )  -> 
( ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
) )
114113exlimdv 1790 . . . 4  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  X  =  U. t )  -> 
( E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u )  C_  U ) ) )
115114expimpd 612 . . 3  |-  ( (
ph  /\  t  e.  ( ~P R  i^i  Fin ) )  ->  (
( X  =  U. t  /\  E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u
)  /\  ( u  X.  ( f `  u
) )  C_  U
) ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
) )
116115rexlimdva 2891 . 2  |-  ( ph  ->  ( E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> S  /\  A. u  e.  t  ( A  e.  ( f `  u )  /\  (
u  X.  ( f `
 u ) ) 
C_  U ) ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u )  C_  U ) ) )
11738, 116mpd 15 1  |-  ( ph  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 375    /\ w3a 991    = wceq 1455   E.wex 1674    e. wcel 1898    =/= wne 2633   A.wral 2749   E.wrex 2750    i^i cin 3415    C_ wss 3416   (/)c0 3743   ~Pcpw 3963   {csn 3980   <.cop 3986   U.cuni 4212   |^|cint 4248   U_ciun 4292   |^|_ciin 4293    X. cxp 4854   ran crn 4857    Fn wfn 5600   -->wf 5601   -onto->wfo 5603   ` cfv 5605  (class class class)co 6320   Fincfn 7600   Topctop 19972   Compccmp 20456    tX ctx 20630
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1680  ax-4 1693  ax-5 1769  ax-6 1816  ax-7 1862  ax-8 1900  ax-9 1907  ax-10 1926  ax-11 1931  ax-12 1944  ax-13 2102  ax-ext 2442  ax-sep 4541  ax-nul 4550  ax-pow 4598  ax-pr 4656  ax-un 6615
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3or 992  df-3an 993  df-tru 1458  df-ex 1675  df-nf 1679  df-sb 1809  df-eu 2314  df-mo 2315  df-clab 2449  df-cleq 2455  df-clel 2458  df-nfc 2592  df-ne 2635  df-ral 2754  df-rex 2755  df-reu 2756  df-rab 2758  df-v 3059  df-sbc 3280  df-csb 3376  df-dif 3419  df-un 3421  df-in 3423  df-ss 3430  df-pss 3432  df-nul 3744  df-if 3894  df-pw 3965  df-sn 3981  df-pr 3983  df-tp 3985  df-op 3987  df-uni 4213  df-int 4249  df-iun 4294  df-iin 4295  df-br 4419  df-opab 4478  df-mpt 4479  df-tr 4514  df-eprel 4767  df-id 4771  df-po 4777  df-so 4778  df-fr 4815  df-we 4817  df-xp 4862  df-rel 4863  df-cnv 4864  df-co 4865  df-dm 4866  df-rn 4867  df-res 4868  df-ima 4869  df-pred 5403  df-ord 5449  df-on 5450  df-lim 5451  df-suc 5452  df-iota 5569  df-fun 5607  df-fn 5608  df-f 5609  df-f1 5610  df-fo 5611  df-f1o 5612  df-fv 5613  df-ov 6323  df-oprab 6324  df-mpt2 6325  df-om 6725  df-1st 6825  df-2nd 6826  df-wrecs 7059  df-recs 7121  df-rdg 7159  df-1o 7213  df-oadd 7217  df-er 7394  df-en 7601  df-dom 7602  df-fin 7604  df-topgen 15397  df-top 19976  df-cmp 20457  df-tx 20632
This theorem is referenced by:  txcmplem1  20711  xkoinjcn  20757  cvmlift2lem12  30087
  Copyright terms: Public domain W3C validator