MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtopon Structured version   Unicode version

Theorem txtopon 19006
Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txtopon  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )

Proof of Theorem txtopon
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 18373 . . 3  |-  ( R  e.  (TopOn `  X
)  ->  R  e.  Top )
2 topontop 18373 . . 3  |-  ( S  e.  (TopOn `  Y
)  ->  S  e.  Top )
3 txtop 18984 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 474 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  Top )
5 eqid 2433 . . . . 5  |-  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  =  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
6 eqid 2433 . . . . 5  |-  U. R  =  U. R
7 eqid 2433 . . . . 5  |-  U. S  =  U. S
85, 6, 7txuni2 18980 . . . 4  |-  ( U. R  X.  U. S )  =  U. ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
9 toponuni 18374 . . . . 5  |-  ( R  e.  (TopOn `  X
)  ->  X  =  U. R )
10 toponuni 18374 . . . . 5  |-  ( S  e.  (TopOn `  Y
)  ->  Y  =  U. S )
11 xpeq12 4846 . . . . 5  |-  ( ( X  =  U. R  /\  Y  =  U. S )  ->  ( X  X.  Y )  =  ( U. R  X.  U. S ) )
129, 10, 11syl2an 474 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  ( U. R  X.  U. S ) )
135txbasex 18981 . . . . 5  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  _V )
14 unitg 18414 . . . . 5  |-  ( ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  e.  _V  ->  U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) ) )  = 
U. ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )
1513, 14syl 16 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  U. ( topGen `
 ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  =  U. ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) ) )
168, 12, 153eqtr4a 2491 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
175txval 18979 . . . 4  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  =  (
topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
1817unieqd 4089 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  U. ( R  tX  S )  = 
U. ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) ) ) )
1916, 18eqtr4d 2468 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( X  X.  Y )  =  U. ( R  tX  S ) )
20 istopon 18372 . 2  |-  ( ( R  tX  S )  e.  (TopOn `  ( X  X.  Y ) )  <-> 
( ( R  tX  S )  e.  Top  /\  ( X  X.  Y
)  =  U. ( R  tX  S ) ) )
214, 19, 20sylanbrc 657 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   _Vcvv 2962   U.cuni 4079    X. cxp 4825   ran crn 4828   ` cfv 5406  (class class class)co 6080    e. cmpt2 6082   topGenctg 14359   Topctop 18340  TopOnctopon 18341    tX ctx 18975
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-ral 2710  df-rex 2711  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-id 4623  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-fv 5414  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-1st 6566  df-2nd 6567  df-topgen 14365  df-top 18345  df-bases 18347  df-topon 18348  df-tx 18977
This theorem is referenced by:  txuni  19007  txcls  19019  tx1cn  19024  tx2cn  19025  txcnp  19035  txcnmpt  19039  txindis  19049  txdis1cn  19050  txlm  19063  lmcn2  19064  xkococn  19075  cnmpt12  19082  cnmpt2c  19085  cnmpt21  19086  cnmpt2t  19088  cnmpt22  19089  cnmpt22f  19090  cnmpt2res  19092  cnmptcom  19093  cnmpt2k  19103  ptunhmeo  19223  xpstopnlem1  19224  xkocnv  19229  xkohmeo  19230  txflf  19421  flfcnp2  19422  cnmpt2plusg  19501  tmdcn2  19502  indistgp  19513  clssubg  19521  divstgplem  19533  prdstmdd  19536  tsmsadd  19563  cnmpt2vsca  19611  txmetcn  19965  cnmpt2ds  20262  fsum2cn  20289  cnmpt2pc  20342  htpyco2  20393  phtpyco2  20404  cnmpt2ip  20602  limccnp2  21209  dvcnp2  21236  dvaddbr  21254  dvmulbr  21255  dvcobr  21262  lhop1lem  21327  taylthlem2  21724  cxpcn3  22071  tpr2tp  26188  txsconlem  26977  txscon  26978  cvmlift2lem11  27050  cvmlift2lem12  27051
  Copyright terms: Public domain W3C validator