Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtopon Structured version   Visualization version   Unicode version

Theorem txtopon 20683
 Description: The underlying set of the product of two topologies. (Contributed by Mario Carneiro, 22-Aug-2015.) (Revised by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txtopon TopOn TopOn TopOn

Proof of Theorem txtopon
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 topontop 20018 . . 3 TopOn
2 topontop 20018 . . 3 TopOn
3 txtop 20661 . . 3
41, 2, 3syl2an 485 . 2 TopOn TopOn
5 eqid 2471 . . . . 5
6 eqid 2471 . . . . 5
7 eqid 2471 . . . . 5
85, 6, 7txuni2 20657 . . . 4
9 toponuni 20019 . . . . 5 TopOn
10 toponuni 20019 . . . . 5 TopOn
11 xpeq12 4858 . . . . 5
129, 10, 11syl2an 485 . . . 4 TopOn TopOn
135txbasex 20658 . . . . 5 TopOn TopOn
14 unitg 20059 . . . . 5
1513, 14syl 17 . . . 4 TopOn TopOn
168, 12, 153eqtr4a 2531 . . 3 TopOn TopOn
175txval 20656 . . . 4 TopOn TopOn
1817unieqd 4200 . . 3 TopOn TopOn
1916, 18eqtr4d 2508 . 2 TopOn TopOn
20 istopon 20017 . 2 TopOn
214, 19, 20sylanbrc 677 1 TopOn TopOn TopOn
 Colors of variables: wff setvar class Syntax hints:   wi 4   wa 376   wceq 1452   wcel 1904  cvv 3031  cuni 4190   cxp 4837   crn 4840  cfv 5589  (class class class)co 6308   cmpt2 6310  ctg 15414  ctop 19994  TopOnctopon 19995   ctx 20652 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602 This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-tx 20654 This theorem is referenced by:  txuni  20684  txcls  20696  tx1cn  20701  tx2cn  20702  txcnp  20712  txcnmpt  20716  txindis  20726  txdis1cn  20727  txlm  20740  lmcn2  20741  xkococn  20752  cnmpt12  20759  cnmpt2c  20762  cnmpt21  20763  cnmpt2t  20765  cnmpt22  20766  cnmpt22f  20767  cnmpt2res  20769  cnmptcom  20770  cnmpt2k  20780  ptunhmeo  20900  xpstopnlem1  20901  xkocnv  20906  xkohmeo  20907  txflf  21099  flfcnp2  21100  cnmpt2plusg  21181  tmdcn2  21182  indistgp  21193  clssubg  21201  qustgplem  21213  prdstmdd  21216  tsmsadd  21239  cnmpt2vsca  21287  txmetcn  21641  cnmpt2ds  21939  fsum2cn  21981  cnmpt2pc  22034  htpyco2  22088  phtpyco2  22099  cnmpt2ip  22297  limccnp2  22926  dvcnp2  22953  dvaddbr  22971  dvmulbr  22972  dvcobr  22979  lhop1lem  23044  taylthlem2  23408  cxpcn3  23767  tpr2tp  28784  txsconlem  30035  txscon  30036  cvmlift2lem11  30108  cvmlift2lem12  30109
 Copyright terms: Public domain W3C validator