MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txtop Structured version   Unicode version

Theorem txtop 19943
Description: The product of two topologies is a topology. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
txtop  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )

Proof of Theorem txtop
Dummy variables  u  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . 3  |-  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )  =  ran  (
u  e.  R , 
v  e.  S  |->  ( u  X.  v ) )
21txval 19938 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) ) )
3 topbas 19347 . . . 4  |-  ( R  e.  Top  ->  R  e. 
TopBases )
4 topbas 19347 . . . 4  |-  ( S  e.  Top  ->  S  e. 
TopBases )
51txbas 19941 . . . 4  |-  ( ( R  e.  TopBases  /\  S  e. 
TopBases )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  TopBases )
63, 4, 5syl2an 477 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) )  e.  TopBases )
7 tgcl 19344 . . 3  |-  ( ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v
) )  e.  TopBases  -> 
( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  e.  Top )
86, 7syl 16 . 2  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( topGen `  ran  ( u  e.  R ,  v  e.  S  |->  ( u  X.  v ) ) )  e.  Top )
92, 8eqeltrd 2531 1  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1804    X. cxp 4987   ran crn 4990   ` cfv 5578  (class class class)co 6281    |-> cmpt2 6283   topGenctg 14712   Topctop 19267   TopBasesctb 19271    tX ctx 19934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-fv 5586  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-1st 6785  df-2nd 6786  df-topgen 14718  df-top 19272  df-bases 19274  df-tx 19936
This theorem is referenced by:  txtopi  19964  txtopon  19965  txcld  19977  neitx  19981  txlly  20010  txnlly  20011  txcmplem1  20015  txcmp  20017  hausdiag  20019  txhaus  20021  tx1stc  20024  txkgen  20026  xkococn  20034  xkoinjcn  20061  txcon  20063  imasnopn  20064  imasncls  20066  utop2nei  20626  utop3cls  20627  qtophaus  27712  txpcon  28550
  Copyright terms: Public domain W3C validator