Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txsconlem Structured version   Unicode version

Theorem txsconlem 27293
Description: Lemma for txscon 27294. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
txscon.1  |-  ( ph  ->  R  e.  Top )
txscon.2  |-  ( ph  ->  S  e.  Top )
txscon.3  |-  ( ph  ->  F  e.  ( II 
Cn  ( R  tX  S ) ) )
txscon.5  |-  A  =  ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  F
)
txscon.6  |-  B  =  ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  F
)
txscon.7  |-  ( ph  ->  G  e.  ( A ( PHtpy `  R )
( ( 0 [,] 1 )  X.  {
( A `  0
) } ) ) )
txscon.8  |-  ( ph  ->  H  e.  ( B ( PHtpy `  S )
( ( 0 [,] 1 )  X.  {
( B `  0
) } ) ) )
Assertion
Ref Expression
txsconlem  |-  ( ph  ->  F (  ~=ph  `  ( R  tX  S ) ) ( ( 0 [,] 1 )  X.  {
( F `  0
) } ) )

Proof of Theorem txsconlem
Dummy variables  x  s  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txscon.3 . 2  |-  ( ph  ->  F  e.  ( II 
Cn  ( R  tX  S ) ) )
2 fconstmpt 4993 . . 3  |-  ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } )  =  ( x  e.  ( 0 [,] 1 )  |->  ( F `
 0 ) )
3 iitopon 20590 . . . . 5  |-  II  e.  (TopOn `  ( 0 [,] 1 ) )
43a1i 11 . . . 4  |-  ( ph  ->  II  e.  (TopOn `  ( 0 [,] 1
) ) )
5 txscon.1 . . . . . 6  |-  ( ph  ->  R  e.  Top )
6 eqid 2454 . . . . . . 7  |-  U. R  =  U. R
76toptopon 18673 . . . . . 6  |-  ( R  e.  Top  <->  R  e.  (TopOn `  U. R ) )
85, 7sylib 196 . . . . 5  |-  ( ph  ->  R  e.  (TopOn `  U. R ) )
9 txscon.2 . . . . . 6  |-  ( ph  ->  S  e.  Top )
10 eqid 2454 . . . . . . 7  |-  U. S  =  U. S
1110toptopon 18673 . . . . . 6  |-  ( S  e.  Top  <->  S  e.  (TopOn `  U. S ) )
129, 11sylib 196 . . . . 5  |-  ( ph  ->  S  e.  (TopOn `  U. S ) )
13 txtopon 19299 . . . . 5  |-  ( ( R  e.  (TopOn `  U. R )  /\  S  e.  (TopOn `  U. S ) )  ->  ( R  tX  S )  e.  (TopOn `  ( U. R  X.  U. S ) ) )
148, 12, 13syl2anc 661 . . . 4  |-  ( ph  ->  ( R  tX  S
)  e.  (TopOn `  ( U. R  X.  U. S ) ) )
15 cnf2 18988 . . . . . 6  |-  ( ( II  e.  (TopOn `  ( 0 [,] 1
) )  /\  ( R  tX  S )  e.  (TopOn `  ( U. R  X.  U. S ) )  /\  F  e.  ( II  Cn  ( R  tX  S ) ) )  ->  F :
( 0 [,] 1
) --> ( U. R  X.  U. S ) )
164, 14, 1, 15syl3anc 1219 . . . . 5  |-  ( ph  ->  F : ( 0 [,] 1 ) --> ( U. R  X.  U. S ) )
17 0elunit 11523 . . . . 5  |-  0  e.  ( 0 [,] 1
)
18 ffvelrn 5953 . . . . 5  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  0  e.  ( 0 [,] 1
) )  ->  ( F `  0 )  e.  ( U. R  X.  U. S ) )
1916, 17, 18sylancl 662 . . . 4  |-  ( ph  ->  ( F `  0
)  e.  ( U. R  X.  U. S ) )
204, 14, 19cnmptc 19370 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  ( F `  0
) )  e.  ( II  Cn  ( R 
tX  S ) ) )
212, 20syl5eqel 2546 . 2  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( F `  0
) } )  e.  ( II  Cn  ( R  tX  S ) ) )
22 txscon.5 . . . . . . . . . . 11  |-  A  =  ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  F
)
23 tx1cn 19317 . . . . . . . . . . . . 13  |-  ( ( R  e.  (TopOn `  U. R )  /\  S  e.  (TopOn `  U. S ) )  ->  ( 1st  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  R
) )
248, 12, 23syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( 1st  |`  ( U. R  X.  U. S
) )  e.  ( ( R  tX  S
)  Cn  R ) )
25 cnco 19005 . . . . . . . . . . . 12  |-  ( ( F  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( 1st  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  R ) )  ->  ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  F )  e.  ( II  Cn  R ) )
261, 24, 25syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 1st  |`  ( U. R  X.  U. S
) )  o.  F
)  e.  ( II 
Cn  R ) )
2722, 26syl5eqel 2546 . . . . . . . . . 10  |-  ( ph  ->  A  e.  ( II 
Cn  R ) )
28 fconstmpt 4993 . . . . . . . . . . 11  |-  ( ( 0 [,] 1 )  X.  { ( A `
 0 ) } )  =  ( x  e.  ( 0 [,] 1 )  |->  ( A `
 0 ) )
29 iiuni 20592 . . . . . . . . . . . . . . 15  |-  ( 0 [,] 1 )  = 
U. II
3029, 6cnf 18985 . . . . . . . . . . . . . 14  |-  ( A  e.  ( II  Cn  R )  ->  A : ( 0 [,] 1 ) --> U. R
)
3127, 30syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  A : ( 0 [,] 1 ) --> U. R )
32 ffvelrn 5953 . . . . . . . . . . . . 13  |-  ( ( A : ( 0 [,] 1 ) --> U. R  /\  0  e.  ( 0 [,] 1
) )  ->  ( A `  0 )  e.  U. R )
3331, 17, 32sylancl 662 . . . . . . . . . . . 12  |-  ( ph  ->  ( A `  0
)  e.  U. R
)
344, 8, 33cnmptc 19370 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  ( A `  0
) )  e.  ( II  Cn  R ) )
3528, 34syl5eqel 2546 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( A `  0
) } )  e.  ( II  Cn  R
) )
3627, 35phtpycn 20690 . . . . . . . . 9  |-  ( ph  ->  ( A ( PHtpy `  R ) ( ( 0 [,] 1 )  X.  { ( A `
 0 ) } ) )  C_  (
( II  tX  II )  Cn  R ) )
37 txscon.7 . . . . . . . . 9  |-  ( ph  ->  G  e.  ( A ( PHtpy `  R )
( ( 0 [,] 1 )  X.  {
( A `  0
) } ) ) )
3836, 37sseldd 3468 . . . . . . . 8  |-  ( ph  ->  G  e.  ( ( II  tX  II )  Cn  R ) )
39 iitop 20591 . . . . . . . . . 10  |-  II  e.  Top
4039, 39, 29, 29txunii 19301 . . . . . . . . 9  |-  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) )  = 
U. ( II  tX  II )
4140, 6cnf 18985 . . . . . . . 8  |-  ( G  e.  ( ( II 
tX  II )  Cn  R )  ->  G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. R
)
42 ffn 5670 . . . . . . . 8  |-  ( G : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. R  ->  G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
4338, 41, 423syl 20 . . . . . . 7  |-  ( ph  ->  G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
44 fnov 6311 . . . . . . 7  |-  ( G  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  <->  G  =  ( x  e.  (
0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( x G y ) ) )
4543, 44sylib 196 . . . . . 6  |-  ( ph  ->  G  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x G y ) ) )
4645, 38eqeltrrd 2543 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( x G y ) )  e.  ( ( II  tX  II )  Cn  R ) )
47 txscon.6 . . . . . . . . . . 11  |-  B  =  ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  F
)
48 tx2cn 19318 . . . . . . . . . . . . 13  |-  ( ( R  e.  (TopOn `  U. R )  /\  S  e.  (TopOn `  U. S ) )  ->  ( 2nd  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  S
) )
498, 12, 48syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( 2nd  |`  ( U. R  X.  U. S
) )  e.  ( ( R  tX  S
)  Cn  S ) )
50 cnco 19005 . . . . . . . . . . . 12  |-  ( ( F  e.  ( II 
Cn  ( R  tX  S ) )  /\  ( 2nd  |`  ( U. R  X.  U. S ) )  e.  ( ( R  tX  S )  Cn  S ) )  ->  ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  F )  e.  ( II  Cn  S ) )
511, 49, 50syl2anc 661 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  F
)  e.  ( II 
Cn  S ) )
5247, 51syl5eqel 2546 . . . . . . . . . 10  |-  ( ph  ->  B  e.  ( II 
Cn  S ) )
53 fconstmpt 4993 . . . . . . . . . . 11  |-  ( ( 0 [,] 1 )  X.  { ( B `
 0 ) } )  =  ( x  e.  ( 0 [,] 1 )  |->  ( B `
 0 ) )
5429, 10cnf 18985 . . . . . . . . . . . . . 14  |-  ( B  e.  ( II  Cn  S )  ->  B : ( 0 [,] 1 ) --> U. S
)
5552, 54syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  B : ( 0 [,] 1 ) --> U. S )
56 ffvelrn 5953 . . . . . . . . . . . . 13  |-  ( ( B : ( 0 [,] 1 ) --> U. S  /\  0  e.  ( 0 [,] 1
) )  ->  ( B `  0 )  e.  U. S )
5755, 17, 56sylancl 662 . . . . . . . . . . . 12  |-  ( ph  ->  ( B `  0
)  e.  U. S
)
584, 12, 57cnmptc 19370 . . . . . . . . . . 11  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) 
|->  ( B `  0
) )  e.  ( II  Cn  S ) )
5953, 58syl5eqel 2546 . . . . . . . . . 10  |-  ( ph  ->  ( ( 0 [,] 1 )  X.  {
( B `  0
) } )  e.  ( II  Cn  S
) )
6052, 59phtpycn 20690 . . . . . . . . 9  |-  ( ph  ->  ( B ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( B `
 0 ) } ) )  C_  (
( II  tX  II )  Cn  S ) )
61 txscon.8 . . . . . . . . 9  |-  ( ph  ->  H  e.  ( B ( PHtpy `  S )
( ( 0 [,] 1 )  X.  {
( B `  0
) } ) ) )
6260, 61sseldd 3468 . . . . . . . 8  |-  ( ph  ->  H  e.  ( ( II  tX  II )  Cn  S ) )
6340, 10cnf 18985 . . . . . . . 8  |-  ( H  e.  ( ( II 
tX  II )  Cn  S )  ->  H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. S
)
64 ffn 5670 . . . . . . . 8  |-  ( H : ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) ) --> U. S  ->  H  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
6562, 63, 643syl 20 . . . . . . 7  |-  ( ph  ->  H  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1 ) ) )
66 fnov 6311 . . . . . . 7  |-  ( H  Fn  ( ( 0 [,] 1 )  X.  ( 0 [,] 1
) )  <->  H  =  ( x  e.  (
0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( x H y ) ) )
6765, 66sylib 196 . . . . . 6  |-  ( ph  ->  H  =  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  ( x H y ) ) )
6867, 62eqeltrrd 2543 . . . . 5  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  ( x H y ) )  e.  ( ( II  tX  II )  Cn  S ) )
694, 4, 46, 68cnmpt2t 19381 . . . 4  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  <. ( x G y ) ,  ( x H y )
>. )  e.  (
( II  tX  II )  Cn  ( R  tX  S ) ) )
7027, 35phtpyhtpy 20689 . . . . . . . . . 10  |-  ( ph  ->  ( A ( PHtpy `  R ) ( ( 0 [,] 1 )  X.  { ( A `
 0 ) } ) )  C_  ( A ( II Htpy  R
) ( ( 0 [,] 1 )  X. 
{ ( A ` 
0 ) } ) ) )
7170, 37sseldd 3468 . . . . . . . . 9  |-  ( ph  ->  G  e.  ( A ( II Htpy  R ) ( ( 0 [,] 1 )  X.  {
( A `  0
) } ) ) )
724, 27, 35, 71htpyi 20681 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s G 0 )  =  ( A `
 s )  /\  ( s G 1 )  =  ( ( ( 0 [,] 1
)  X.  { ( A `  0 ) } ) `  s
) ) )
7372simpld 459 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s G 0 )  =  ( A `  s ) )
7422fveq1i 5803 . . . . . . . 8  |-  ( A `
 s )  =  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  F ) `  s
)
75 fvco3 5880 . . . . . . . . 9  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1st  |`  ( U. R  X.  U. S
) )  o.  F
) `  s )  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `  s ) ) )
7616, 75sylan 471 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 1st  |`  ( U. R  X.  U. S
) )  o.  F
) `  s )  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `  s ) ) )
7774, 76syl5eq 2507 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( A `  s )  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `  s ) ) )
78 ffvelrn 5953 . . . . . . . . 9  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  s )  e.  ( U. R  X.  U. S ) )
7916, 78sylan 471 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  s )  e.  ( U. R  X.  U. S ) )
80 fvres 5816 . . . . . . . 8  |-  ( ( F `  s )  e.  ( U. R  X.  U. S )  -> 
( ( 1st  |`  ( U. R  X.  U. S
) ) `  ( F `  s )
)  =  ( 1st `  ( F `  s
) ) )
8179, 80syl 16 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `
 s ) )  =  ( 1st `  ( F `  s )
) )
8273, 77, 813eqtrd 2499 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s G 0 )  =  ( 1st `  ( F `  s )
) )
8352, 59phtpyhtpy 20689 . . . . . . . . . 10  |-  ( ph  ->  ( B ( PHtpy `  S ) ( ( 0 [,] 1 )  X.  { ( B `
 0 ) } ) )  C_  ( B ( II Htpy  S
) ( ( 0 [,] 1 )  X. 
{ ( B ` 
0 ) } ) ) )
8483, 61sseldd 3468 . . . . . . . . 9  |-  ( ph  ->  H  e.  ( B ( II Htpy  S ) ( ( 0 [,] 1 )  X.  {
( B `  0
) } ) ) )
854, 52, 59, 84htpyi 20681 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( s H 0 )  =  ( B `
 s )  /\  ( s H 1 )  =  ( ( ( 0 [,] 1
)  X.  { ( B `  0 ) } ) `  s
) ) )
8685simpld 459 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 0 )  =  ( B `  s ) )
8747fveq1i 5803 . . . . . . . 8  |-  ( B `
 s )  =  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  F ) `  s
)
88 fvco3 5880 . . . . . . . . 9  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  F
) `  s )  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `  s ) ) )
8916, 88sylan 471 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  F
) `  s )  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `  s ) ) )
9087, 89syl5eq 2507 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( B `  s )  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `  s ) ) )
91 fvres 5816 . . . . . . . 8  |-  ( ( F `  s )  e.  ( U. R  X.  U. S )  -> 
( ( 2nd  |`  ( U. R  X.  U. S
) ) `  ( F `  s )
)  =  ( 2nd `  ( F `  s
) ) )
9279, 91syl 16 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `
 s ) )  =  ( 2nd `  ( F `  s )
) )
9386, 90, 923eqtrd 2499 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 0 )  =  ( 2nd `  ( F `  s )
) )
9482, 93opeq12d 4178 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. (
s G 0 ) ,  ( s H 0 ) >.  =  <. ( 1st `  ( F `
 s ) ) ,  ( 2nd `  ( F `  s )
) >. )
95 simpr 461 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  s  e.  ( 0 [,] 1
) )
96 oveq12 6212 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( x G y )  =  ( s G 0 ) )
97 oveq12 6212 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  0 )  ->  ( x H y )  =  ( s H 0 ) )
9896, 97opeq12d 4178 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  0 )  ->  <. ( x G y ) ,  ( x H y )
>.  =  <. ( s G 0 ) ,  ( s H 0 ) >. )
99 eqid 2454 . . . . . . 7  |-  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  <. (
x G y ) ,  ( x H y ) >. )  =  ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. )
100 opex 4667 . . . . . . 7  |-  <. (
s G 0 ) ,  ( s H 0 ) >.  e.  _V
10198, 99, 100ovmpt2a 6334 . . . . . 6  |-  ( ( s  e.  ( 0 [,] 1 )  /\  0  e.  ( 0 [,] 1 ) )  ->  ( s ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  <.
( x G y ) ,  ( x H y ) >.
) 0 )  = 
<. ( s G 0 ) ,  ( s H 0 ) >.
)
10295, 17, 101sylancl 662 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. ) 0 )  = 
<. ( s G 0 ) ,  ( s H 0 ) >.
)
103 1st2nd2 6726 . . . . . 6  |-  ( ( F `  s )  e.  ( U. R  X.  U. S )  -> 
( F `  s
)  =  <. ( 1st `  ( F `  s ) ) ,  ( 2nd `  ( F `  s )
) >. )
10479, 103syl 16 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  s )  =  <. ( 1st `  ( F `  s )
) ,  ( 2nd `  ( F `  s
) ) >. )
10594, 102, 1043eqtr4d 2505 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. ) 0 )  =  ( F `  s
) )
10672simprd 463 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s G 1 )  =  ( ( ( 0 [,] 1 )  X.  { ( A `
 0 ) } ) `  s ) )
107 fvex 5812 . . . . . . . . 9  |-  ( A `
 0 )  e. 
_V
108107fvconst2 6045 . . . . . . . 8  |-  ( s  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( A `  0
) } ) `  s )  =  ( A `  0 ) )
109108adantl 466 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 0 [,] 1 )  X.  {
( A `  0
) } ) `  s )  =  ( A `  0 ) )
11022fveq1i 5803 . . . . . . . . 9  |-  ( A `
 0 )  =  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  F ) `  0
)
111 fvco3 5880 . . . . . . . . . . 11  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  0  e.  ( 0 [,] 1
) )  ->  (
( ( 1st  |`  ( U. R  X.  U. S
) )  o.  F
) `  0 )  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `  0 ) ) )
11216, 17, 111sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  F ) `  0
)  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `
 0 ) ) )
113 fvres 5816 . . . . . . . . . . 11  |-  ( ( F `  0 )  e.  ( U. R  X.  U. S )  -> 
( ( 1st  |`  ( U. R  X.  U. S
) ) `  ( F `  0 )
)  =  ( 1st `  ( F `  0
) ) )
11419, 113syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( 1st  |`  ( U. R  X.  U. S
) ) `  ( F `  0 )
)  =  ( 1st `  ( F `  0
) ) )
115112, 114eqtrd 2495 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  F ) `  0
)  =  ( 1st `  ( F `  0
) ) )
116110, 115syl5eq 2507 . . . . . . . 8  |-  ( ph  ->  ( A `  0
)  =  ( 1st `  ( F `  0
) ) )
117116adantr 465 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( A `  0 )  =  ( 1st `  ( F `  0 )
) )
118106, 109, 1173eqtrd 2499 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s G 1 )  =  ( 1st `  ( F `  0 )
) )
11985simprd 463 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 1 )  =  ( ( ( 0 [,] 1 )  X.  { ( B `
 0 ) } ) `  s ) )
120 fvex 5812 . . . . . . . . 9  |-  ( B `
 0 )  e. 
_V
121120fvconst2 6045 . . . . . . . 8  |-  ( s  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( B `  0
) } ) `  s )  =  ( B `  0 ) )
122121adantl 466 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 0 [,] 1 )  X.  {
( B `  0
) } ) `  s )  =  ( B `  0 ) )
12347fveq1i 5803 . . . . . . . . 9  |-  ( B `
 0 )  =  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  F ) `  0
)
124 fvco3 5880 . . . . . . . . . . 11  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  0  e.  ( 0 [,] 1
) )  ->  (
( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  F
) `  0 )  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `  0 ) ) )
12516, 17, 124sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  F ) `  0
)  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `
 0 ) ) )
126 fvres 5816 . . . . . . . . . . 11  |-  ( ( F `  0 )  e.  ( U. R  X.  U. S )  -> 
( ( 2nd  |`  ( U. R  X.  U. S
) ) `  ( F `  0 )
)  =  ( 2nd `  ( F `  0
) ) )
12719, 126syl 16 . . . . . . . . . 10  |-  ( ph  ->  ( ( 2nd  |`  ( U. R  X.  U. S
) ) `  ( F `  0 )
)  =  ( 2nd `  ( F `  0
) ) )
128125, 127eqtrd 2495 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  F ) `  0
)  =  ( 2nd `  ( F `  0
) ) )
129123, 128syl5eq 2507 . . . . . . . 8  |-  ( ph  ->  ( B `  0
)  =  ( 2nd `  ( F `  0
) ) )
130129adantr 465 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( B `  0 )  =  ( 2nd `  ( F `  0 )
) )
131119, 122, 1303eqtrd 2499 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s H 1 )  =  ( 2nd `  ( F `  0 )
) )
132118, 131opeq12d 4178 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. (
s G 1 ) ,  ( s H 1 ) >.  =  <. ( 1st `  ( F `
 0 ) ) ,  ( 2nd `  ( F `  0 )
) >. )
133 1elunit 11524 . . . . . 6  |-  1  e.  ( 0 [,] 1
)
134 oveq12 6212 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( x G y )  =  ( s G 1 ) )
135 oveq12 6212 . . . . . . . 8  |-  ( ( x  =  s  /\  y  =  1 )  ->  ( x H y )  =  ( s H 1 ) )
136134, 135opeq12d 4178 . . . . . . 7  |-  ( ( x  =  s  /\  y  =  1 )  ->  <. ( x G y ) ,  ( x H y )
>.  =  <. ( s G 1 ) ,  ( s H 1 ) >. )
137 opex 4667 . . . . . . 7  |-  <. (
s G 1 ) ,  ( s H 1 ) >.  e.  _V
138136, 99, 137ovmpt2a 6334 . . . . . 6  |-  ( ( s  e.  ( 0 [,] 1 )  /\  1  e.  ( 0 [,] 1 ) )  ->  ( s ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  <.
( x G y ) ,  ( x H y ) >.
) 1 )  = 
<. ( s G 1 ) ,  ( s H 1 ) >.
)
13995, 133, 138sylancl 662 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. ) 1 )  = 
<. ( s G 1 ) ,  ( s H 1 ) >.
)
140 fvex 5812 . . . . . . . 8  |-  ( F `
 0 )  e. 
_V
141140fvconst2 6045 . . . . . . 7  |-  ( s  e.  ( 0 [,] 1 )  ->  (
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) `  s )  =  ( F `  0 ) )
142141adantl 466 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) `  s )  =  ( F `  0 ) )
14319adantr 465 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  0 )  e.  ( U. R  X.  U. S ) )
144 1st2nd2 6726 . . . . . . 7  |-  ( ( F `  0 )  e.  ( U. R  X.  U. S )  -> 
( F `  0
)  =  <. ( 1st `  ( F ` 
0 ) ) ,  ( 2nd `  ( F `  0 )
) >. )
145143, 144syl 16 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  0 )  =  <. ( 1st `  ( F `  0 )
) ,  ( 2nd `  ( F `  0
) ) >. )
146142, 145eqtrd 2495 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( ( 0 [,] 1 )  X.  {
( F `  0
) } ) `  s )  =  <. ( 1st `  ( F `
 0 ) ) ,  ( 2nd `  ( F `  0 )
) >. )
147132, 139, 1463eqtr4d 2505 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
s ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. ) 1 )  =  ( ( ( 0 [,] 1 )  X. 
{ ( F ` 
0 ) } ) `
 s ) )
14827, 35, 37phtpyi 20691 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 G s )  =  ( A `
 0 )  /\  ( 1 G s )  =  ( A `
 1 ) ) )
149148simpld 459 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 G s )  =  ( A ` 
0 ) )
150149, 117eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 G s )  =  ( 1st `  ( F `  0 )
) )
15152, 59, 61phtpyi 20691 . . . . . . . 8  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
( 0 H s )  =  ( B `
 0 )  /\  ( 1 H s )  =  ( B `
 1 ) ) )
152151simpld 459 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( B ` 
0 ) )
153152, 130eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 H s )  =  ( 2nd `  ( F `  0 )
) )
154150, 153opeq12d 4178 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. (
0 G s ) ,  ( 0 H s ) >.  =  <. ( 1st `  ( F `
 0 ) ) ,  ( 2nd `  ( F `  0 )
) >. )
155 oveq12 6212 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( x G y )  =  ( 0 G s ) )
156 oveq12 6212 . . . . . . . 8  |-  ( ( x  =  0  /\  y  =  s )  ->  ( x H y )  =  ( 0 H s ) )
157155, 156opeq12d 4178 . . . . . . 7  |-  ( ( x  =  0  /\  y  =  s )  ->  <. ( x G y ) ,  ( x H y )
>.  =  <. ( 0 G s ) ,  ( 0 H s ) >. )
158 opex 4667 . . . . . . 7  |-  <. (
0 G s ) ,  ( 0 H s ) >.  e.  _V
159157, 99, 158ovmpt2a 6334 . . . . . 6  |-  ( ( 0  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 0 ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  <.
( x G y ) ,  ( x H y ) >.
) s )  = 
<. ( 0 G s ) ,  ( 0 H s ) >.
)
16017, 95, 159sylancr 663 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. ) s )  = 
<. ( 0 G s ) ,  ( 0 H s ) >.
)
161154, 160, 1453eqtr4d 2505 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
0 ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. ) s )  =  ( F `  0
) )
162148simprd 463 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 G s )  =  ( A ` 
1 ) )
16322fveq1i 5803 . . . . . . . . . 10  |-  ( A `
 1 )  =  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  F ) `  1
)
164 fvco3 5880 . . . . . . . . . . 11  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  1  e.  ( 0 [,] 1
) )  ->  (
( ( 1st  |`  ( U. R  X.  U. S
) )  o.  F
) `  1 )  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `  1 ) ) )
16516, 133, 164sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 1st  |`  ( U. R  X.  U. S ) )  o.  F ) `  1
)  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `
 1 ) ) )
166163, 165syl5eq 2507 . . . . . . . . 9  |-  ( ph  ->  ( A `  1
)  =  ( ( 1st  |`  ( U. R  X.  U. S ) ) `  ( F `
 1 ) ) )
167 ffvelrn 5953 . . . . . . . . . . 11  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  1  e.  ( 0 [,] 1
) )  ->  ( F `  1 )  e.  ( U. R  X.  U. S ) )
16816, 133, 167sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( F `  1
)  e.  ( U. R  X.  U. S ) )
169 fvres 5816 . . . . . . . . . 10  |-  ( ( F `  1 )  e.  ( U. R  X.  U. S )  -> 
( ( 1st  |`  ( U. R  X.  U. S
) ) `  ( F `  1 )
)  =  ( 1st `  ( F `  1
) ) )
170168, 169syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( 1st  |`  ( U. R  X.  U. S
) ) `  ( F `  1 )
)  =  ( 1st `  ( F `  1
) ) )
171166, 170eqtrd 2495 . . . . . . . 8  |-  ( ph  ->  ( A `  1
)  =  ( 1st `  ( F `  1
) ) )
172171adantr 465 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( A `  1 )  =  ( 1st `  ( F `  1 )
) )
173162, 172eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 G s )  =  ( 1st `  ( F `  1 )
) )
174151simprd 463 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( B ` 
1 ) )
17547fveq1i 5803 . . . . . . . . . 10  |-  ( B `
 1 )  =  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  F ) `  1
)
176 fvco3 5880 . . . . . . . . . . 11  |-  ( ( F : ( 0 [,] 1 ) --> ( U. R  X.  U. S )  /\  1  e.  ( 0 [,] 1
) )  ->  (
( ( 2nd  |`  ( U. R  X.  U. S
) )  o.  F
) `  1 )  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `  1 ) ) )
17716, 133, 176sylancl 662 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 2nd  |`  ( U. R  X.  U. S ) )  o.  F ) `  1
)  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `
 1 ) ) )
178175, 177syl5eq 2507 . . . . . . . . 9  |-  ( ph  ->  ( B `  1
)  =  ( ( 2nd  |`  ( U. R  X.  U. S ) ) `  ( F `
 1 ) ) )
179 fvres 5816 . . . . . . . . . 10  |-  ( ( F `  1 )  e.  ( U. R  X.  U. S )  -> 
( ( 2nd  |`  ( U. R  X.  U. S
) ) `  ( F `  1 )
)  =  ( 2nd `  ( F `  1
) ) )
180168, 179syl 16 . . . . . . . . 9  |-  ( ph  ->  ( ( 2nd  |`  ( U. R  X.  U. S
) ) `  ( F `  1 )
)  =  ( 2nd `  ( F `  1
) ) )
181178, 180eqtrd 2495 . . . . . . . 8  |-  ( ph  ->  ( B `  1
)  =  ( 2nd `  ( F `  1
) ) )
182181adantr 465 . . . . . . 7  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( B `  1 )  =  ( 2nd `  ( F `  1 )
) )
183174, 182eqtrd 2495 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 H s )  =  ( 2nd `  ( F `  1 )
) )
184173, 183opeq12d 4178 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  <. (
1 G s ) ,  ( 1 H s ) >.  =  <. ( 1st `  ( F `
 1 ) ) ,  ( 2nd `  ( F `  1 )
) >. )
185 oveq12 6212 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( x G y )  =  ( 1 G s ) )
186 oveq12 6212 . . . . . . . 8  |-  ( ( x  =  1  /\  y  =  s )  ->  ( x H y )  =  ( 1 H s ) )
187185, 186opeq12d 4178 . . . . . . 7  |-  ( ( x  =  1  /\  y  =  s )  ->  <. ( x G y ) ,  ( x H y )
>.  =  <. ( 1 G s ) ,  ( 1 H s ) >. )
188 opex 4667 . . . . . . 7  |-  <. (
1 G s ) ,  ( 1 H s ) >.  e.  _V
189187, 99, 188ovmpt2a 6334 . . . . . 6  |-  ( ( 1  e.  ( 0 [,] 1 )  /\  s  e.  ( 0 [,] 1 ) )  ->  ( 1 ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  <.
( x G y ) ,  ( x H y ) >.
) s )  = 
<. ( 1 G s ) ,  ( 1 H s ) >.
)
190133, 95, 189sylancr 663 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. ) s )  = 
<. ( 1 G s ) ,  ( 1 H s ) >.
)
191168adantr 465 . . . . . 6  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  1 )  e.  ( U. R  X.  U. S ) )
192 1st2nd2 6726 . . . . . 6  |-  ( ( F `  1 )  e.  ( U. R  X.  U. S )  -> 
( F `  1
)  =  <. ( 1st `  ( F ` 
1 ) ) ,  ( 2nd `  ( F `  1 )
) >. )
193191, 192syl 16 . . . . 5  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  ( F `  1 )  =  <. ( 1st `  ( F `  1 )
) ,  ( 2nd `  ( F `  1
) ) >. )
194184, 190, 1933eqtr4d 2505 . . . 4  |-  ( (
ph  /\  s  e.  ( 0 [,] 1
) )  ->  (
1 ( x  e.  ( 0 [,] 1
) ,  y  e.  ( 0 [,] 1
)  |->  <. ( x G y ) ,  ( x H y )
>. ) s )  =  ( F `  1
) )
1951, 21, 69, 105, 147, 161, 194isphtpy2d 20694 . . 3  |-  ( ph  ->  ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 ) 
|->  <. ( x G y ) ,  ( x H y )
>. )  e.  ( F ( PHtpy `  ( R  tX  S ) ) ( ( 0 [,] 1 )  X.  {
( F `  0
) } ) ) )
196 ne0i 3754 . . 3  |-  ( ( x  e.  ( 0 [,] 1 ) ,  y  e.  ( 0 [,] 1 )  |->  <.
( x G y ) ,  ( x H y ) >.
)  e.  ( F ( PHtpy `  ( R  tX  S ) ) ( ( 0 [,] 1
)  X.  { ( F `  0 ) } ) )  -> 
( F ( PHtpy `  ( R  tX  S
) ) ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } ) )  =/=  (/) )
197195, 196syl 16 . 2  |-  ( ph  ->  ( F ( PHtpy `  ( R  tX  S
) ) ( ( 0 [,] 1 )  X.  { ( F `
 0 ) } ) )  =/=  (/) )
198 isphtpc 20701 . 2  |-  ( F (  ~=ph  `  ( R 
tX  S ) ) ( ( 0 [,] 1 )  X.  {
( F `  0
) } )  <->  ( F  e.  ( II  Cn  ( R  tX  S ) )  /\  ( ( 0 [,] 1 )  X. 
{ ( F ` 
0 ) } )  e.  ( II  Cn  ( R  tX  S ) )  /\  ( F ( PHtpy `  ( R  tX  S ) ) ( ( 0 [,] 1
)  X.  { ( F `  0 ) } ) )  =/=  (/) ) )
1991, 21, 197, 198syl3anbrc 1172 1  |-  ( ph  ->  F (  ~=ph  `  ( R  tX  S ) ) ( ( 0 [,] 1 )  X.  {
( F `  0
) } ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2648   (/)c0 3748   {csn 3988   <.cop 3994   U.cuni 4202   class class class wbr 4403    |-> cmpt 4461    X. cxp 4949    |` cres 4953    o. ccom 4955    Fn wfn 5524   -->wf 5525   ` cfv 5529  (class class class)co 6203    |-> cmpt2 6205   1stc1st 6688   2ndc2nd 6689   0cc0 9396   1c1 9397   [,]cicc 11417   Topctop 18633  TopOnctopon 18634    Cn ccn 18963    tX ctx 19268   IIcii 20586   Htpy chtpy 20674   PHtpycphtpy 20675    ~=ph cphtpc 20676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473  ax-pre-sup 9474
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rmo 2807  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-er 7214  df-map 7329  df-en 7424  df-dom 7425  df-sdom 7426  df-sup 7805  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-div 10108  df-nn 10437  df-2 10494  df-3 10495  df-n0 10694  df-z 10761  df-uz 10976  df-q 11068  df-rp 11106  df-xneg 11203  df-xadd 11204  df-xmul 11205  df-icc 11421  df-seq 11927  df-exp 11986  df-cj 12709  df-re 12710  df-im 12711  df-sqr 12845  df-abs 12846  df-topgen 14504  df-psmet 17937  df-xmet 17938  df-met 17939  df-bl 17940  df-mopn 17941  df-top 18638  df-bases 18640  df-topon 18641  df-cn 18966  df-cnp 18967  df-tx 19270  df-ii 20588  df-htpy 20677  df-phtpy 20678  df-phtpc 20699
This theorem is referenced by:  txscon  27294
  Copyright terms: Public domain W3C validator