MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txrest Structured version   Unicode version

Theorem txrest 19226
Description: The subspace of a topological product space induced by a subset with a Cartesian product representation is a topological product of the subspaces induced by the subspaces of the terms of the products. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 2-Sep-2015.)
Assertion
Ref Expression
txrest  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A ) 
tX  ( St  B ) ) )

Proof of Theorem txrest
Dummy variables  s 
r  u  v  x  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2443 . . . . . 6  |-  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )  =  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )
21txval 19159 . . . . 5  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
32adantr 465 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
43oveq1d 6127 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( topGen `  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) )t  ( A  X.  B ) ) )
51txbasex 19161 . . . 4  |-  ( ( R  e.  V  /\  S  e.  W )  ->  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V )
6 xpexg 6528 . . . 4  |-  ( ( A  e.  X  /\  B  e.  Y )  ->  ( A  X.  B
)  e.  _V )
7 tgrest 18785 . . . 4  |-  ( ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V  /\  ( A  X.  B )  e.  _V )  ->  ( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) )t  ( A  X.  B ) ) )
85, 6, 7syl2an 477 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) )t  ( A  X.  B ) ) )
9 elrest 14387 . . . . . . . 8  |-  ( ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  e. 
_V  /\  ( A  X.  B )  e.  _V )  ->  ( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
105, 6, 9syl2an 477 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
11 vex 2996 . . . . . . . . . . 11  |-  r  e. 
_V
1211inex1 4454 . . . . . . . . . 10  |-  ( r  i^i  A )  e. 
_V
1312a1i 11 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  r  e.  R )  ->  (
r  i^i  A )  e.  _V )
14 elrest 14387 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  A  e.  X )  ->  ( u  e.  ( Rt  A )  <->  E. r  e.  R  u  =  ( r  i^i  A
) ) )
1514ad2ant2r 746 . . . . . . . . 9  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( u  e.  ( Rt  A )  <->  E. r  e.  R  u  =  ( r  i^i  A
) ) )
16 xpeq1 4875 . . . . . . . . . . . 12  |-  ( u  =  ( r  i^i 
A )  ->  (
u  X.  v )  =  ( ( r  i^i  A )  X.  v ) )
1716eqeq2d 2454 . . . . . . . . . . 11  |-  ( u  =  ( r  i^i 
A )  ->  (
x  =  ( u  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  v
) ) )
1817rexbidv 2757 . . . . . . . . . 10  |-  ( u  =  ( r  i^i 
A )  ->  ( E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. v  e.  ( St  B ) x  =  ( ( r  i^i 
A )  X.  v
) ) )
19 vex 2996 . . . . . . . . . . . . 13  |-  s  e. 
_V
2019inex1 4454 . . . . . . . . . . . 12  |-  ( s  i^i  B )  e. 
_V
2120a1i 11 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  s  e.  S )  ->  (
s  i^i  B )  e.  _V )
22 elrest 14387 . . . . . . . . . . . 12  |-  ( ( S  e.  W  /\  B  e.  Y )  ->  ( v  e.  ( St  B )  <->  E. s  e.  S  v  =  ( s  i^i  B
) ) )
2322ad2ant2l 745 . . . . . . . . . . 11  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( v  e.  ( St  B )  <->  E. s  e.  S  v  =  ( s  i^i  B
) ) )
24 xpeq2 4876 . . . . . . . . . . . . 13  |-  ( v  =  ( s  i^i 
B )  ->  (
( r  i^i  A
)  X.  v )  =  ( ( r  i^i  A )  X.  ( s  i^i  B
) ) )
2524eqeq2d 2454 . . . . . . . . . . . 12  |-  ( v  =  ( s  i^i 
B )  ->  (
x  =  ( ( r  i^i  A )  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
2625adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  v  =  ( s  i^i  B
) )  ->  (
x  =  ( ( r  i^i  A )  X.  v )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
2721, 23, 26rexxfr2d 4530 . . . . . . . . . 10  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. v  e.  ( St  B ) x  =  ( ( r  i^i 
A )  X.  v
)  <->  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
2818, 27sylan9bbr 700 . . . . . . . . 9  |-  ( ( ( ( R  e.  V  /\  S  e.  W )  /\  ( A  e.  X  /\  B  e.  Y )
)  /\  u  =  ( r  i^i  A
) )  ->  ( E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
2913, 15, 28rexxfr2d 4530 . . . . . . . 8  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
3011, 19xpex 6529 . . . . . . . . . 10  |-  ( r  X.  s )  e. 
_V
3130rgen2w 2805 . . . . . . . . 9  |-  A. r  e.  R  A. s  e.  S  ( r  X.  s )  e.  _V
32 eqid 2443 . . . . . . . . . 10  |-  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  =  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )
33 ineq1 3566 . . . . . . . . . . . 12  |-  ( w  =  ( r  X.  s )  ->  (
w  i^i  ( A  X.  B ) )  =  ( ( r  X.  s )  i^i  ( A  X.  B ) ) )
34 inxp 4993 . . . . . . . . . . . 12  |-  ( ( r  X.  s )  i^i  ( A  X.  B ) )  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
)
3533, 34syl6eq 2491 . . . . . . . . . . 11  |-  ( w  =  ( r  X.  s )  ->  (
w  i^i  ( A  X.  B ) )  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) )
3635eqeq2d 2454 . . . . . . . . . 10  |-  ( w  =  ( r  X.  s )  ->  (
x  =  ( w  i^i  ( A  X.  B ) )  <->  x  =  ( ( r  i^i 
A )  X.  (
s  i^i  B )
) ) )
3732, 36rexrnmpt2 6227 . . . . . . . . 9  |-  ( A. r  e.  R  A. s  e.  S  (
r  X.  s )  e.  _V  ->  ( E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) )  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) ) )
3831, 37ax-mp 5 . . . . . . . 8  |-  ( E. w  e.  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) ) x  =  ( w  i^i  ( A  X.  B ) )  <->  E. r  e.  R  E. s  e.  S  x  =  ( (
r  i^i  A )  X.  ( s  i^i  B
) ) )
3929, 38syl6bbr 263 . . . . . . 7  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
)  <->  E. w  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) x  =  ( w  i^i  ( A  X.  B ) ) ) )
4010, 39bitr4d 256 . . . . . 6  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( x  e.  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  <->  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) ) )
4140abbi2dv 2564 . . . . 5  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  =  { x  |  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) } )
42 eqid 2443 . . . . . 6  |-  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B ) 
|->  ( u  X.  v
) )
4342rnmpt2 6221 . . . . 5  |-  ran  (
u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  { x  |  E. u  e.  ( Rt  A ) E. v  e.  ( St  B ) x  =  ( u  X.  v
) }
4441, 43syl6eqr 2493 . . . 4  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )t  ( A  X.  B ) )  =  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) )
4544fveq2d 5716 . . 3  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( topGen `  ( ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) )t  ( A  X.  B ) ) )  =  ( topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B ) 
|->  ( u  X.  v
) ) ) )
464, 8, 453eqtr2d 2481 . 2  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) ) )
47 ovex 6137 . . 3  |-  ( Rt  A )  e.  _V
48 ovex 6137 . . 3  |-  ( St  B )  e.  _V
49 eqid 2443 . . . 4  |-  ran  (
u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )  =  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) )
5049txval 19159 . . 3  |-  ( ( ( Rt  A )  e.  _V  /\  ( St  B )  e.  _V )  ->  ( ( Rt  A )  tX  ( St  B ) )  =  (
topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) ) )
5147, 48, 50mp2an 672 . 2  |-  ( ( Rt  A )  tX  ( St  B ) )  =  ( topGen `  ran  ( u  e.  ( Rt  A ) ,  v  e.  ( St  B )  |->  ( u  X.  v ) ) )
5246, 51syl6eqr 2493 1  |-  ( ( ( R  e.  V  /\  S  e.  W
)  /\  ( A  e.  X  /\  B  e.  Y ) )  -> 
( ( R  tX  S )t  ( A  X.  B ) )  =  ( ( Rt  A ) 
tX  ( St  B ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1369    e. wcel 1756   {cab 2429   A.wral 2736   E.wrex 2737   _Vcvv 2993    i^i cin 3348    X. cxp 4859   ran crn 4862   ` cfv 5439  (class class class)co 6112    e. cmpt2 6114   ↾t crest 14380   topGenctg 14397    tX ctx 19155
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4424  ax-sep 4434  ax-nul 4442  ax-pow 4491  ax-pr 4552  ax-un 6393
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2622  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 2995  df-sbc 3208  df-csb 3310  df-dif 3352  df-un 3354  df-in 3356  df-ss 3363  df-nul 3659  df-if 3813  df-pw 3883  df-sn 3899  df-pr 3901  df-op 3905  df-uni 4113  df-iun 4194  df-br 4314  df-opab 4372  df-mpt 4373  df-id 4657  df-xp 4867  df-rel 4868  df-cnv 4869  df-co 4870  df-dm 4871  df-rn 4872  df-res 4873  df-ima 4874  df-iota 5402  df-fun 5441  df-fn 5442  df-f 5443  df-f1 5444  df-fo 5445  df-f1o 5446  df-fv 5447  df-ov 6115  df-oprab 6116  df-mpt2 6117  df-1st 6598  df-2nd 6599  df-rest 14382  df-topgen 14403  df-tx 19157
This theorem is referenced by:  txlly  19231  txnlly  19232  txkgen  19247  cnmpt2res  19272  xkoinjcn  19282  cnmpt2pc  20522  cnheiborlem  20548  lhop1lem  21507  cxpcn3  22208  raddcn  26381  cvmlift2lem6  27219  cvmlift2lem9  27222  cvmlift2lem12  27225
  Copyright terms: Public domain W3C validator