Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpss3v Structured version   Visualization version   Unicode version

Theorem txpss3v 30651
Description: A tail Cartesian product is a subset of the class of ordered triples. (Contributed by Scott Fenton, 31-Mar-2012.)
Assertion
Ref Expression
txpss3v  |-  ( A 
(x)  B )  C_  ( _V  X.  ( _V  X.  _V ) )

Proof of Theorem txpss3v
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-txp 30626 . 2  |-  ( A 
(x)  B )  =  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B ) )
2 inss1 3620 . . 3  |-  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )  C_  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )
3 relco 5312 . . . 4  |-  Rel  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )
4 vex 3016 . . . . . . . . 9  |-  z  e. 
_V
5 vex 3016 . . . . . . . . 9  |-  y  e. 
_V
64, 5brcnv 4995 . . . . . . . 8  |-  ( z `' ( 1st  |`  ( _V  X.  _V ) ) y  <->  y ( 1st  |`  ( _V  X.  _V ) ) z )
74brres 5089 . . . . . . . . 9  |-  ( y ( 1st  |`  ( _V  X.  _V ) ) z  <->  ( y 1st z  /\  y  e.  ( _V  X.  _V ) ) )
87simprbi 470 . . . . . . . 8  |-  ( y ( 1st  |`  ( _V  X.  _V ) ) z  ->  y  e.  ( _V  X.  _V )
)
96, 8sylbi 200 . . . . . . 7  |-  ( z `' ( 1st  |`  ( _V  X.  _V ) ) y  ->  y  e.  ( _V  X.  _V )
)
109adantl 472 . . . . . 6  |-  ( ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y )  ->  y  e.  ( _V  X.  _V ) )
1110exlimiv 1780 . . . . 5  |-  ( E. z ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y )  ->  y  e.  ( _V  X.  _V ) )
12 vex 3016 . . . . . 6  |-  x  e. 
_V
1312, 5opelco 4984 . . . . 5  |-  ( <.
x ,  y >.  e.  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
)  <->  E. z ( x A z  /\  z `' ( 1st  |`  ( _V  X.  _V ) ) y ) )
14 opelxp 4842 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) )  <-> 
( x  e.  _V  /\  y  e.  ( _V 
X.  _V ) ) )
1512, 14mpbiran 929 . . . . 5  |-  ( <.
x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) )  <-> 
y  e.  ( _V 
X.  _V ) )
1611, 13, 153imtr4i 274 . . . 4  |-  ( <.
x ,  y >.  e.  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A
)  ->  <. x ,  y >.  e.  ( _V  X.  ( _V  X.  _V ) ) )
173, 16relssi 4904 . . 3  |-  ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  C_  ( _V  X.  ( _V  X.  _V ) )
182, 17sstri 3409 . 2  |-  ( ( `' ( 1st  |`  ( _V  X.  _V ) )  o.  A )  i^i  ( `' ( 2nd  |`  ( _V  X.  _V ) )  o.  B
) )  C_  ( _V  X.  ( _V  X.  _V ) )
191, 18eqsstri 3430 1  |-  ( A 
(x)  B )  C_  ( _V  X.  ( _V  X.  _V ) )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 375   E.wex 1667    e. wcel 1891   _Vcvv 3013    i^i cin 3371    C_ wss 3372   <.cop 3942   class class class wbr 4374    X. cxp 4810   `'ccnv 4811    |` cres 4814    o. ccom 4816   1stc1st 6779   2ndc2nd 6780    (x) ctxp 30602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1673  ax-4 1686  ax-5 1762  ax-6 1809  ax-7 1855  ax-9 1900  ax-10 1919  ax-11 1924  ax-12 1937  ax-13 2092  ax-ext 2432  ax-sep 4497  ax-nul 4506  ax-pr 4612
This theorem depends on definitions:  df-bi 190  df-or 376  df-an 377  df-3an 988  df-tru 1451  df-ex 1668  df-nf 1672  df-sb 1802  df-eu 2304  df-mo 2305  df-clab 2439  df-cleq 2445  df-clel 2448  df-nfc 2582  df-ne 2624  df-ral 2742  df-rex 2743  df-rab 2746  df-v 3015  df-dif 3375  df-un 3377  df-in 3379  df-ss 3386  df-nul 3700  df-if 3850  df-sn 3937  df-pr 3939  df-op 3943  df-br 4375  df-opab 4434  df-xp 4818  df-rel 4819  df-cnv 4820  df-co 4821  df-res 4824  df-txp 30626
This theorem is referenced by:  txprel  30652  brtxp2  30654  pprodss4v  30657
  Copyright terms: Public domain W3C validator