Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpcon Structured version   Unicode version

Theorem txpcon 28941
Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txpcon  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( R  tX  S )  e. PCon )

Proof of Theorem txpcon
Dummy variables  f  x  y  g  h  t  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcontop 28934 . . 3  |-  ( R  e. PCon  ->  R  e.  Top )
2 pcontop 28934 . . 3  |-  ( S  e. PCon  ->  S  e.  Top )
3 txtop 20236 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 475 . 2  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( R  tX  S )  e.  Top )
5 an6 1306 . . . . . . . . . 10  |-  ( ( ( R  e. PCon  /\  x  e.  U. R  /\  z  e.  U. R )  /\  ( S  e. PCon  /\  y  e.  U. S  /\  w  e.  U. S
) )  <->  ( ( R  e. PCon  /\  S  e. PCon
)  /\  ( x  e.  U. R  /\  y  e.  U. S )  /\  ( z  e.  U. R  /\  w  e.  U. S ) ) )
6 eqid 2454 . . . . . . . . . . . 12  |-  U. R  =  U. R
76pconcn 28933 . . . . . . . . . . 11  |-  ( ( R  e. PCon  /\  x  e.  U. R  /\  z  e.  U. R )  ->  E. g  e.  (
II  Cn  R )
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z ) )
8 eqid 2454 . . . . . . . . . . . 12  |-  U. S  =  U. S
98pconcn 28933 . . . . . . . . . . 11  |-  ( ( S  e. PCon  /\  y  e.  U. S  /\  w  e.  U. S )  ->  E. h  e.  (
II  Cn  S )
( ( h ` 
0 )  =  y  /\  ( h ` 
1 )  =  w ) )
107, 9anim12i 564 . . . . . . . . . 10  |-  ( ( ( R  e. PCon  /\  x  e.  U. R  /\  z  e.  U. R )  /\  ( S  e. PCon  /\  y  e.  U. S  /\  w  e.  U. S
) )  ->  ( E. g  e.  (
II  Cn  R )
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  E. h  e.  ( II  Cn  S
) ( ( h `
 0 )  =  y  /\  ( h `
 1 )  =  w ) ) )
115, 10sylbir 213 . . . . . . . . 9  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  ->  ( E. g  e.  ( II  Cn  R
) ( ( g `
 0 )  =  x  /\  ( g `
 1 )  =  z )  /\  E. h  e.  ( II  Cn  S ) ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) )
12 reeanv 3022 . . . . . . . . 9  |-  ( E. g  e.  ( II 
Cn  R ) E. h  e.  ( II 
Cn  S ) ( ( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) )  <->  ( E. g  e.  ( II  Cn  R ) ( ( g `  0 )  =  x  /\  (
g `  1 )  =  z )  /\  E. h  e.  ( II 
Cn  S ) ( ( h `  0
)  =  y  /\  ( h `  1
)  =  w ) ) )
1311, 12sylibr 212 . . . . . . . 8  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  ->  E. g  e.  ( II  Cn  R ) E. h  e.  ( II  Cn  S ) ( ( ( g `
 0 )  =  x  /\  ( g `
 1 )  =  z )  /\  (
( h `  0
)  =  y  /\  ( h `  1
)  =  w ) ) )
14 iiuni 21551 . . . . . . . . . . . . 13  |-  ( 0 [,] 1 )  = 
U. II
15 eqid 2454 . . . . . . . . . . . . 13  |-  ( t  e.  ( 0 [,] 1 )  |->  <. (
g `  t ) ,  ( h `  t ) >. )  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )
1614, 15txcnmpt 20291 . . . . . . . . . . . 12  |-  ( ( g  e.  ( II 
Cn  R )  /\  h  e.  ( II  Cn  S ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  <. ( g `  t ) ,  ( h `  t )
>. )  e.  (
II  Cn  ( R  tX  S ) ) )
1716ad2antrl 725 . . . . . . . . . . 11  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  e.  (
II  Cn  ( R  tX  S ) ) )
18 0elunit 11641 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,] 1
)
19 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( t  =  0  ->  (
g `  t )  =  ( g ` 
0 ) )
20 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( t  =  0  ->  (
h `  t )  =  ( h ` 
0 ) )
2119, 20opeq12d 4211 . . . . . . . . . . . . . 14  |-  ( t  =  0  ->  <. (
g `  t ) ,  ( h `  t ) >.  =  <. ( g `  0 ) ,  ( h ` 
0 ) >. )
22 opex 4701 . . . . . . . . . . . . . 14  |-  <. (
g `  0 ) ,  ( h ` 
0 ) >.  e.  _V
2321, 15, 22fvmpt 5931 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( t  e.  ( 0 [,] 1 ) 
|->  <. ( g `  t ) ,  ( h `  t )
>. ) `  0 )  =  <. ( g ` 
0 ) ,  ( h `  0 )
>. )
2418, 23ax-mp 5 . . . . . . . . . . . 12  |-  ( ( t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  0 )  =  <. ( g ` 
0 ) ,  ( h `  0 )
>.
25 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( (
g `  0 )  =  x  /\  (
g `  1 )  =  z ) )
2625simpld 457 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( g `  0 )  =  x )
27 simprrr 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( (
h `  0 )  =  y  /\  (
h `  1 )  =  w ) )
2827simpld 457 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( h `  0 )  =  y )
2926, 28opeq12d 4211 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  <. ( g `
 0 ) ,  ( h `  0
) >.  =  <. x ,  y >. )
3024, 29syl5eq 2507 . . . . . . . . . . 11  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( (
t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  0 )  =  <. x ,  y
>. )
31 1elunit 11642 . . . . . . . . . . . . 13  |-  1  e.  ( 0 [,] 1
)
32 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( t  =  1  ->  (
g `  t )  =  ( g ` 
1 ) )
33 fveq2 5848 . . . . . . . . . . . . . . 15  |-  ( t  =  1  ->  (
h `  t )  =  ( h ` 
1 ) )
3432, 33opeq12d 4211 . . . . . . . . . . . . . 14  |-  ( t  =  1  ->  <. (
g `  t ) ,  ( h `  t ) >.  =  <. ( g `  1 ) ,  ( h ` 
1 ) >. )
35 opex 4701 . . . . . . . . . . . . . 14  |-  <. (
g `  1 ) ,  ( h ` 
1 ) >.  e.  _V
3634, 15, 35fvmpt 5931 . . . . . . . . . . . . 13  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( t  e.  ( 0 [,] 1 ) 
|->  <. ( g `  t ) ,  ( h `  t )
>. ) `  1 )  =  <. ( g ` 
1 ) ,  ( h `  1 )
>. )
3731, 36ax-mp 5 . . . . . . . . . . . 12  |-  ( ( t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  1 )  =  <. ( g ` 
1 ) ,  ( h `  1 )
>.
3825simprd 461 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( g `  1 )  =  z )
3927simprd 461 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( h `  1 )  =  w )
4038, 39opeq12d 4211 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  <. ( g `
 1 ) ,  ( h `  1
) >.  =  <. z ,  w >. )
4137, 40syl5eq 2507 . . . . . . . . . . 11  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( (
t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  1 )  =  <. z ,  w >. )
42 fveq1 5847 . . . . . . . . . . . . . 14  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( f `
 0 )  =  ( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  0 ) )
4342eqeq1d 2456 . . . . . . . . . . . . 13  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( ( f `  0 )  =  <. x ,  y
>. 
<->  ( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  0 )  =  <. x ,  y
>. ) )
44 fveq1 5847 . . . . . . . . . . . . . 14  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( f `
 1 )  =  ( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  1 ) )
4544eqeq1d 2456 . . . . . . . . . . . . 13  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( ( f `  1 )  =  <. z ,  w >.  <-> 
( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  1 )  =  <. z ,  w >. ) )
4643, 45anbi12d 708 . . . . . . . . . . . 12  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( ( ( f `  0
)  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. )  <->  ( ( ( t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  0 )  =  <. x ,  y
>.  /\  ( ( t  e.  ( 0 [,] 1 )  |->  <. (
g `  t ) ,  ( h `  t ) >. ) `  1 )  = 
<. z ,  w >. ) ) )
4746rspcev 3207 . . . . . . . . . . 11  |-  ( ( ( t  e.  ( 0 [,] 1 ) 
|->  <. ( g `  t ) ,  ( h `  t )
>. )  e.  (
II  Cn  ( R  tX  S ) )  /\  ( ( ( t  e.  ( 0 [,] 1 )  |->  <. (
g `  t ) ,  ( h `  t ) >. ) `  0 )  = 
<. x ,  y >.  /\  ( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  1 )  =  <. z ,  w >. ) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
4817, 30, 41, 47syl12anc 1224 . . . . . . . . . 10  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
4948expr 613 . . . . . . . . 9  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( g  e.  ( II  Cn  R
)  /\  h  e.  ( II  Cn  S
) ) )  -> 
( ( ( ( g `  0 )  =  x  /\  (
g `  1 )  =  z )  /\  ( ( h ` 
0 )  =  y  /\  ( h ` 
1 )  =  w ) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
5049rexlimdvva 2953 . . . . . . . 8  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  ->  ( E. g  e.  ( II  Cn  R
) E. h  e.  ( II  Cn  S
) ( ( ( g `  0 )  =  x  /\  (
g `  1 )  =  z )  /\  ( ( h ` 
0 )  =  y  /\  ( h ` 
1 )  =  w ) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
5113, 50mpd 15 . . . . . . 7  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  ->  E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
52513expa 1194 . . . . . 6  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
) )  /\  (
z  e.  U. R  /\  w  e.  U. S
) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
5352ralrimivva 2875 . . . . 5  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
) )  ->  A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
5453ralrimivva 2875 . . . 4  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  A. x  e.  U. R A. y  e.  U. S A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
55 eqeq2 2469 . . . . . . . . 9  |-  ( v  =  <. z ,  w >.  ->  ( ( f `
 1 )  =  v  <->  ( f ` 
1 )  =  <. z ,  w >. )
)
5655anbi2d 701 . . . . . . . 8  |-  ( v  =  <. z ,  w >.  ->  ( ( ( f `  0 )  =  u  /\  (
f `  1 )  =  v )  <->  ( (
f `  0 )  =  u  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
5756rexbidv 2965 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  <. z ,  w >. )
) )
5857ralxp 5133 . . . . . 6  |-  ( A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  <. z ,  w >. )
)
59 eqeq2 2469 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( ( f `
 0 )  =  u  <->  ( f ` 
0 )  =  <. x ,  y >. )
)
6059anbi1d 702 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( ( ( f `  0 )  =  u  /\  (
f `  1 )  =  <. z ,  w >. )  <->  ( ( f `
 0 )  = 
<. x ,  y >.  /\  ( f `  1
)  =  <. z ,  w >. ) ) )
6160rexbidv 2965 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  <. z ,  w >. )  <->  E. f  e.  ( II 
Cn  ( R  tX  S ) ) ( ( f `  0
)  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
62612ralbidv 2898 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  <. z ,  w >. )  <->  A. z  e.  U. R A. w  e.  U. S E. f  e.  (
II  Cn  ( R  tX  S ) ) ( ( f `  0
)  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
6358, 62syl5bb 257 . . . . 5  |-  ( u  =  <. x ,  y
>.  ->  ( A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
6463ralxp 5133 . . . 4  |-  ( A. u  e.  ( U. R  X.  U. S ) A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. x  e.  U. R A. y  e.  U. S A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
6554, 64sylibr 212 . . 3  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  A. u  e.  ( U. R  X.  U. S ) A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) )
666, 8txuni 20259 . . . . 5  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( U. R  X.  U. S )  =  U. ( R  tX  S ) )
671, 2, 66syl2an 475 . . . 4  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( U. R  X.  U. S )  =  U. ( R 
tX  S ) )
6867raleqdv 3057 . . . 4  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. v  e.  U. ( R  tX  S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) ) )
6967, 68raleqbidv 3065 . . 3  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( A. u  e.  ( U. R  X.  U. S ) A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. u  e.  U. ( R  tX  S ) A. v  e.  U. ( R  tX  S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) ) )
7065, 69mpbid 210 . 2  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  A. u  e.  U. ( R  tX  S ) A. v  e.  U. ( R  tX  S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) )
71 eqid 2454 . . 3  |-  U. ( R  tX  S )  = 
U. ( R  tX  S )
7271ispcon 28932 . 2  |-  ( ( R  tX  S )  e. PCon 
<->  ( ( R  tX  S )  e.  Top  /\ 
A. u  e.  U. ( R  tX  S ) A. v  e.  U. ( R  tX  S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) ) )
734, 70, 72sylanbrc 662 1  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( R  tX  S )  e. PCon )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 971    = wceq 1398    e. wcel 1823   A.wral 2804   E.wrex 2805   <.cop 4022   U.cuni 4235    |-> cmpt 4497    X. cxp 4986   ` cfv 5570  (class class class)co 6270   0cc0 9481   1c1 9482   [,]cicc 11535   Topctop 19561    Cn ccn 19892    tX ctx 20227   IIcii 21545  PConcpcon 28928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-sup 7893  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-icc 11539  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-topgen 14933  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-top 19566  df-bases 19568  df-topon 19569  df-cn 19895  df-tx 20229  df-ii 21547  df-pcon 28930
This theorem is referenced by:  txscon  28950
  Copyright terms: Public domain W3C validator