Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  txpcon Structured version   Unicode version

Theorem txpcon 27133
Description: The topological product of two path-connected spaces is path-connected. (Contributed by Mario Carneiro, 12-Feb-2015.)
Assertion
Ref Expression
txpcon  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( R  tX  S )  e. PCon )

Proof of Theorem txpcon
Dummy variables  f  x  y  g  h  t  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pcontop 27126 . . 3  |-  ( R  e. PCon  ->  R  e.  Top )
2 pcontop 27126 . . 3  |-  ( S  e. PCon  ->  S  e.  Top )
3 txtop 19154 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 477 . 2  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( R  tX  S )  e.  Top )
5 an6 1298 . . . . . . . . . 10  |-  ( ( ( R  e. PCon  /\  x  e.  U. R  /\  z  e.  U. R )  /\  ( S  e. PCon  /\  y  e.  U. S  /\  w  e.  U. S
) )  <->  ( ( R  e. PCon  /\  S  e. PCon
)  /\  ( x  e.  U. R  /\  y  e.  U. S )  /\  ( z  e.  U. R  /\  w  e.  U. S ) ) )
6 eqid 2443 . . . . . . . . . . . 12  |-  U. R  =  U. R
76pconcn 27125 . . . . . . . . . . 11  |-  ( ( R  e. PCon  /\  x  e.  U. R  /\  z  e.  U. R )  ->  E. g  e.  (
II  Cn  R )
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z ) )
8 eqid 2443 . . . . . . . . . . . 12  |-  U. S  =  U. S
98pconcn 27125 . . . . . . . . . . 11  |-  ( ( S  e. PCon  /\  y  e.  U. S  /\  w  e.  U. S )  ->  E. h  e.  (
II  Cn  S )
( ( h ` 
0 )  =  y  /\  ( h ` 
1 )  =  w ) )
107, 9anim12i 566 . . . . . . . . . 10  |-  ( ( ( R  e. PCon  /\  x  e.  U. R  /\  z  e.  U. R )  /\  ( S  e. PCon  /\  y  e.  U. S  /\  w  e.  U. S
) )  ->  ( E. g  e.  (
II  Cn  R )
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  E. h  e.  ( II  Cn  S
) ( ( h `
 0 )  =  y  /\  ( h `
 1 )  =  w ) ) )
115, 10sylbir 213 . . . . . . . . 9  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  ->  ( E. g  e.  ( II  Cn  R
) ( ( g `
 0 )  =  x  /\  ( g `
 1 )  =  z )  /\  E. h  e.  ( II  Cn  S ) ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) )
12 reeanv 2900 . . . . . . . . 9  |-  ( E. g  e.  ( II 
Cn  R ) E. h  e.  ( II 
Cn  S ) ( ( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) )  <->  ( E. g  e.  ( II  Cn  R ) ( ( g `  0 )  =  x  /\  (
g `  1 )  =  z )  /\  E. h  e.  ( II 
Cn  S ) ( ( h `  0
)  =  y  /\  ( h `  1
)  =  w ) ) )
1311, 12sylibr 212 . . . . . . . 8  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  ->  E. g  e.  ( II  Cn  R ) E. h  e.  ( II  Cn  S ) ( ( ( g `
 0 )  =  x  /\  ( g `
 1 )  =  z )  /\  (
( h `  0
)  =  y  /\  ( h `  1
)  =  w ) ) )
14 iiuni 20469 . . . . . . . . . . . . 13  |-  ( 0 [,] 1 )  = 
U. II
15 eqid 2443 . . . . . . . . . . . . 13  |-  ( t  e.  ( 0 [,] 1 )  |->  <. (
g `  t ) ,  ( h `  t ) >. )  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )
1614, 15txcnmpt 19209 . . . . . . . . . . . 12  |-  ( ( g  e.  ( II 
Cn  R )  /\  h  e.  ( II  Cn  S ) )  -> 
( t  e.  ( 0 [,] 1 ) 
|->  <. ( g `  t ) ,  ( h `  t )
>. )  e.  (
II  Cn  ( R  tX  S ) ) )
1716ad2antrl 727 . . . . . . . . . . 11  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  e.  (
II  Cn  ( R  tX  S ) ) )
18 0elunit 11415 . . . . . . . . . . . . 13  |-  0  e.  ( 0 [,] 1
)
19 fveq2 5703 . . . . . . . . . . . . . . 15  |-  ( t  =  0  ->  (
g `  t )  =  ( g ` 
0 ) )
20 fveq2 5703 . . . . . . . . . . . . . . 15  |-  ( t  =  0  ->  (
h `  t )  =  ( h ` 
0 ) )
2119, 20opeq12d 4079 . . . . . . . . . . . . . 14  |-  ( t  =  0  ->  <. (
g `  t ) ,  ( h `  t ) >.  =  <. ( g `  0 ) ,  ( h ` 
0 ) >. )
22 opex 4568 . . . . . . . . . . . . . 14  |-  <. (
g `  0 ) ,  ( h ` 
0 ) >.  e.  _V
2321, 15, 22fvmpt 5786 . . . . . . . . . . . . 13  |-  ( 0  e.  ( 0 [,] 1 )  ->  (
( t  e.  ( 0 [,] 1 ) 
|->  <. ( g `  t ) ,  ( h `  t )
>. ) `  0 )  =  <. ( g ` 
0 ) ,  ( h `  0 )
>. )
2418, 23ax-mp 5 . . . . . . . . . . . 12  |-  ( ( t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  0 )  =  <. ( g ` 
0 ) ,  ( h `  0 )
>.
25 simprrl 763 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( (
g `  0 )  =  x  /\  (
g `  1 )  =  z ) )
2625simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( g `  0 )  =  x )
27 simprrr 764 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( (
h `  0 )  =  y  /\  (
h `  1 )  =  w ) )
2827simpld 459 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( h `  0 )  =  y )
2926, 28opeq12d 4079 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  <. ( g `
 0 ) ,  ( h `  0
) >.  =  <. x ,  y >. )
3024, 29syl5eq 2487 . . . . . . . . . . 11  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( (
t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  0 )  =  <. x ,  y
>. )
31 1elunit 11416 . . . . . . . . . . . . 13  |-  1  e.  ( 0 [,] 1
)
32 fveq2 5703 . . . . . . . . . . . . . . 15  |-  ( t  =  1  ->  (
g `  t )  =  ( g ` 
1 ) )
33 fveq2 5703 . . . . . . . . . . . . . . 15  |-  ( t  =  1  ->  (
h `  t )  =  ( h ` 
1 ) )
3432, 33opeq12d 4079 . . . . . . . . . . . . . 14  |-  ( t  =  1  ->  <. (
g `  t ) ,  ( h `  t ) >.  =  <. ( g `  1 ) ,  ( h ` 
1 ) >. )
35 opex 4568 . . . . . . . . . . . . . 14  |-  <. (
g `  1 ) ,  ( h ` 
1 ) >.  e.  _V
3634, 15, 35fvmpt 5786 . . . . . . . . . . . . 13  |-  ( 1  e.  ( 0 [,] 1 )  ->  (
( t  e.  ( 0 [,] 1 ) 
|->  <. ( g `  t ) ,  ( h `  t )
>. ) `  1 )  =  <. ( g ` 
1 ) ,  ( h `  1 )
>. )
3731, 36ax-mp 5 . . . . . . . . . . . 12  |-  ( ( t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  1 )  =  <. ( g ` 
1 ) ,  ( h `  1 )
>.
3825simprd 463 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( g `  1 )  =  z )
3927simprd 463 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( h `  1 )  =  w )
4038, 39opeq12d 4079 . . . . . . . . . . . 12  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  <. ( g `
 1 ) ,  ( h `  1
) >.  =  <. z ,  w >. )
4137, 40syl5eq 2487 . . . . . . . . . . 11  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  ( (
t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  1 )  =  <. z ,  w >. )
42 fveq1 5702 . . . . . . . . . . . . . 14  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( f `
 0 )  =  ( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  0 ) )
4342eqeq1d 2451 . . . . . . . . . . . . 13  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( ( f `  0 )  =  <. x ,  y
>. 
<->  ( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  0 )  =  <. x ,  y
>. ) )
44 fveq1 5702 . . . . . . . . . . . . . 14  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( f `
 1 )  =  ( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  1 ) )
4544eqeq1d 2451 . . . . . . . . . . . . 13  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( ( f `  1 )  =  <. z ,  w >.  <-> 
( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  1 )  =  <. z ,  w >. ) )
4643, 45anbi12d 710 . . . . . . . . . . . 12  |-  ( f  =  ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. )  ->  ( ( ( f `  0
)  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. )  <->  ( ( ( t  e.  ( 0 [,] 1 )  |->  <.
( g `  t
) ,  ( h `
 t ) >.
) `  0 )  =  <. x ,  y
>.  /\  ( ( t  e.  ( 0 [,] 1 )  |->  <. (
g `  t ) ,  ( h `  t ) >. ) `  1 )  = 
<. z ,  w >. ) ) )
4746rspcev 3085 . . . . . . . . . . 11  |-  ( ( ( t  e.  ( 0 [,] 1 ) 
|->  <. ( g `  t ) ,  ( h `  t )
>. )  e.  (
II  Cn  ( R  tX  S ) )  /\  ( ( ( t  e.  ( 0 [,] 1 )  |->  <. (
g `  t ) ,  ( h `  t ) >. ) `  0 )  = 
<. x ,  y >.  /\  ( ( t  e.  ( 0 [,] 1
)  |->  <. ( g `  t ) ,  ( h `  t )
>. ) `  1 )  =  <. z ,  w >. ) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
4817, 30, 41, 47syl12anc 1216 . . . . . . . . . 10  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( ( g  e.  ( II  Cn  R )  /\  h  e.  ( II  Cn  S
) )  /\  (
( ( g ` 
0 )  =  x  /\  ( g ` 
1 )  =  z )  /\  ( ( h `  0 )  =  y  /\  (
h `  1 )  =  w ) ) ) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
4948expr 615 . . . . . . . . 9  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  /\  ( g  e.  ( II  Cn  R
)  /\  h  e.  ( II  Cn  S
) ) )  -> 
( ( ( ( g `  0 )  =  x  /\  (
g `  1 )  =  z )  /\  ( ( h ` 
0 )  =  y  /\  ( h ` 
1 )  =  w ) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
5049rexlimdvva 2860 . . . . . . . 8  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  ->  ( E. g  e.  ( II  Cn  R
) E. h  e.  ( II  Cn  S
) ( ( ( g `  0 )  =  x  /\  (
g `  1 )  =  z )  /\  ( ( h ` 
0 )  =  y  /\  ( h ` 
1 )  =  w ) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
5113, 50mpd 15 . . . . . . 7  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
)  /\  ( z  e.  U. R  /\  w  e.  U. S ) )  ->  E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
52513expa 1187 . . . . . 6  |-  ( ( ( ( R  e. PCon  /\  S  e. PCon )  /\  ( x  e.  U. R  /\  y  e.  U. S
) )  /\  (
z  e.  U. R  /\  w  e.  U. S
) )  ->  E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
5352ralrimivva 2820 . . . . 5  |-  ( ( ( R  e. PCon  /\  S  e. PCon )  /\  (
x  e.  U. R  /\  y  e.  U. S
) )  ->  A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
5453ralrimivva 2820 . . . 4  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  A. x  e.  U. R A. y  e.  U. S A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
55 eqeq2 2452 . . . . . . . . 9  |-  ( v  =  <. z ,  w >.  ->  ( ( f `
 1 )  =  v  <->  ( f ` 
1 )  =  <. z ,  w >. )
)
5655anbi2d 703 . . . . . . . 8  |-  ( v  =  <. z ,  w >.  ->  ( ( ( f `  0 )  =  u  /\  (
f `  1 )  =  v )  <->  ( (
f `  0 )  =  u  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
5756rexbidv 2748 . . . . . . 7  |-  ( v  =  <. z ,  w >.  ->  ( E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  <. z ,  w >. )
) )
5857ralxp 4993 . . . . . 6  |-  ( A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  <. z ,  w >. )
)
59 eqeq2 2452 . . . . . . . . 9  |-  ( u  =  <. x ,  y
>.  ->  ( ( f `
 0 )  =  u  <->  ( f ` 
0 )  =  <. x ,  y >. )
)
6059anbi1d 704 . . . . . . . 8  |-  ( u  =  <. x ,  y
>.  ->  ( ( ( f `  0 )  =  u  /\  (
f `  1 )  =  <. z ,  w >. )  <->  ( ( f `
 0 )  = 
<. x ,  y >.  /\  ( f `  1
)  =  <. z ,  w >. ) ) )
6160rexbidv 2748 . . . . . . 7  |-  ( u  =  <. x ,  y
>.  ->  ( E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  <. z ,  w >. )  <->  E. f  e.  ( II 
Cn  ( R  tX  S ) ) ( ( f `  0
)  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
62612ralbidv 2769 . . . . . 6  |-  ( u  =  <. x ,  y
>.  ->  ( A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  <. z ,  w >. )  <->  A. z  e.  U. R A. w  e.  U. S E. f  e.  (
II  Cn  ( R  tX  S ) ) ( ( f `  0
)  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
6358, 62syl5bb 257 . . . . 5  |-  ( u  =  <. x ,  y
>.  ->  ( A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) ) )
6463ralxp 4993 . . . 4  |-  ( A. u  e.  ( U. R  X.  U. S ) A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. x  e.  U. R A. y  e.  U. S A. z  e.  U. R A. w  e.  U. S E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  <. x ,  y >.  /\  (
f `  1 )  =  <. z ,  w >. ) )
6554, 64sylibr 212 . . 3  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  A. u  e.  ( U. R  X.  U. S ) A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) )
666, 8txuni 19177 . . . . 5  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( U. R  X.  U. S )  =  U. ( R  tX  S ) )
671, 2, 66syl2an 477 . . . 4  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( U. R  X.  U. S )  =  U. ( R 
tX  S ) )
6867raleqdv 2935 . . . 4  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. v  e.  U. ( R  tX  S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) ) )
6967, 68raleqbidv 2943 . . 3  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( A. u  e.  ( U. R  X.  U. S ) A. v  e.  ( U. R  X.  U. S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v )  <->  A. u  e.  U. ( R  tX  S ) A. v  e.  U. ( R  tX  S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) ) )
7065, 69mpbid 210 . 2  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  A. u  e.  U. ( R  tX  S ) A. v  e.  U. ( R  tX  S ) E. f  e.  ( II  Cn  ( R  tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) )
71 eqid 2443 . . 3  |-  U. ( R  tX  S )  = 
U. ( R  tX  S )
7271ispcon 27124 . 2  |-  ( ( R  tX  S )  e. PCon 
<->  ( ( R  tX  S )  e.  Top  /\ 
A. u  e.  U. ( R  tX  S ) A. v  e.  U. ( R  tX  S ) E. f  e.  ( II  Cn  ( R 
tX  S ) ) ( ( f ` 
0 )  =  u  /\  ( f ` 
1 )  =  v ) ) )
734, 70, 72sylanbrc 664 1  |-  ( ( R  e. PCon  /\  S  e. PCon )  ->  ( R  tX  S )  e. PCon )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2727   E.wrex 2728   <.cop 3895   U.cuni 4103    e. cmpt 4362    X. cxp 4850   ` cfv 5430  (class class class)co 6103   0cc0 9294   1c1 9295   [,]cicc 11315   Topctop 18510    Cn ccn 18840    tX ctx 19145   IIcii 20463  PConcpcon 27120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-map 7228  df-en 7323  df-dom 7324  df-sdom 7325  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-q 10966  df-rp 11004  df-xneg 11101  df-xadd 11102  df-xmul 11103  df-icc 11319  df-seq 11819  df-exp 11878  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-topgen 14394  df-psmet 17821  df-xmet 17822  df-met 17823  df-bl 17824  df-mopn 17825  df-top 18515  df-bases 18517  df-topon 18518  df-cn 18843  df-tx 19147  df-ii 20465  df-pcon 27122
This theorem is referenced by:  txscon  27142
  Copyright terms: Public domain W3C validator