MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txindis Structured version   Unicode version

Theorem txindis 19980
Description: The topological product of indiscrete spaces is indiscrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txindis  |-  ( {
(/) ,  A }  tX  { (/) ,  B }
)  =  { (/) ,  ( A  X.  B
) }

Proof of Theorem txindis
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neq0 3800 . . . . . . 7  |-  ( -.  x  =  (/)  <->  E. y 
y  e.  x )
2 indistop 19348 . . . . . . . . . . 11  |-  { (/) ,  A }  e.  Top
3 indistop 19348 . . . . . . . . . . 11  |-  { (/) ,  B }  e.  Top
4 eltx 19914 . . . . . . . . . . 11  |-  ( ( { (/) ,  A }  e.  Top  /\  { (/) ,  B }  e.  Top )  ->  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  <->  A. y  e.  x  E. z  e.  { (/) ,  A } E. w  e.  { (/) ,  B }  ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x ) ) )
52, 3, 4mp2an 672 . . . . . . . . . 10  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  <->  A. y  e.  x  E. z  e.  { (/) ,  A } E. w  e.  { (/) ,  B }  ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x ) )
6 rsp 2833 . . . . . . . . . 10  |-  ( A. y  e.  x  E. z  e.  { (/) ,  A } E. w  e.  { (/)
,  B }  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )  ->  ( y  e.  x  ->  E. z  e.  { (/)
,  A } E. w  e.  { (/) ,  B }  ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) ) )
75, 6sylbi 195 . . . . . . . . 9  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  -> 
( y  e.  x  ->  E. z  e.  { (/)
,  A } E. w  e.  { (/) ,  B }  ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) ) )
8 elssuni 4280 . . . . . . . . . . . . . 14  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  ->  x  C_  U. ( {
(/) ,  A }  tX  { (/) ,  B }
) )
9 indisuni 19349 . . . . . . . . . . . . . . 15  |-  (  _I 
`  A )  = 
U. { (/) ,  A }
10 indisuni 19349 . . . . . . . . . . . . . . 15  |-  (  _I 
`  B )  = 
U. { (/) ,  B }
112, 3, 9, 10txunii 19939 . . . . . . . . . . . . . 14  |-  ( (  _I  `  A )  X.  (  _I  `  B ) )  = 
U. ( { (/) ,  A }  tX  { (/) ,  B } )
128, 11syl6sseqr 3556 . . . . . . . . . . . . 13  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  ->  x  C_  ( (  _I 
`  A )  X.  (  _I  `  B
) ) )
1312ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B }
)  /\  ( z  e.  { (/) ,  A }  /\  w  e.  { (/) ,  B } ) )  /\  ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) )  ->  x  C_  ( (  _I  `  A )  X.  (  _I  `  B ) ) )
14 ne0i 3796 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( z  X.  w )  ->  (
z  X.  w )  =/=  (/) )
1514ad2antrl 727 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( z  X.  w )  =/=  (/) )
16 xpnz 5431 . . . . . . . . . . . . . . . . . . 19  |-  ( ( z  =/=  (/)  /\  w  =/=  (/) )  <->  ( z  X.  w )  =/=  (/) )
1715, 16sylibr 212 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( z  =/=  (/)  /\  w  =/=  (/) ) )
1817simpld 459 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  z  =/=  (/) )
1918neneqd 2669 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  -.  z  =  (/) )
20 simpll 753 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  z  e.  {
(/) ,  A }
)
21 indislem 19346 . . . . . . . . . . . . . . . . . . 19  |-  { (/) ,  (  _I  `  A
) }  =  { (/)
,  A }
2220, 21syl6eleqr 2566 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  z  e.  {
(/) ,  (  _I  `  A ) } )
23 elpri 4052 . . . . . . . . . . . . . . . . . 18  |-  ( z  e.  { (/) ,  (  _I  `  A ) }  ->  ( z  =  (/)  \/  z  =  (  _I  `  A
) ) )
2422, 23syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( z  =  (/)  \/  z  =  (  _I  `  A
) ) )
2524ord 377 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( -.  z  =  (/)  ->  z  =  (  _I  `  A
) ) )
2619, 25mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  z  =  (  _I  `  A ) )
2717simprd 463 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  w  =/=  (/) )
2827neneqd 2669 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  -.  w  =  (/) )
29 simplr 754 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  w  e.  {
(/) ,  B }
)
30 indislem 19346 . . . . . . . . . . . . . . . . . . 19  |-  { (/) ,  (  _I  `  B
) }  =  { (/)
,  B }
3129, 30syl6eleqr 2566 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  w  e.  {
(/) ,  (  _I  `  B ) } )
32 elpri 4052 . . . . . . . . . . . . . . . . . 18  |-  ( w  e.  { (/) ,  (  _I  `  B ) }  ->  ( w  =  (/)  \/  w  =  (  _I  `  B
) ) )
3331, 32syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( w  =  (/)  \/  w  =  (  _I  `  B
) ) )
3433ord 377 . . . . . . . . . . . . . . . 16  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( -.  w  =  (/)  ->  w  =  (  _I  `  B
) ) )
3528, 34mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  w  =  (  _I  `  B ) )
3626, 35xpeq12d 5029 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( z  X.  w )  =  ( (  _I  `  A
)  X.  (  _I 
`  B ) ) )
37 simprr 756 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( z  X.  w )  C_  x
)
3836, 37eqsstr3d 3544 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  { (/)
,  A }  /\  w  e.  { (/) ,  B } )  /\  (
y  e.  ( z  X.  w )  /\  ( z  X.  w
)  C_  x )
)  ->  ( (  _I  `  A )  X.  (  _I  `  B
) )  C_  x
)
3938adantll 713 . . . . . . . . . . . 12  |-  ( ( ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B }
)  /\  ( z  e.  { (/) ,  A }  /\  w  e.  { (/) ,  B } ) )  /\  ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) )  ->  (
(  _I  `  A
)  X.  (  _I 
`  B ) ) 
C_  x )
4013, 39eqssd 3526 . . . . . . . . . . 11  |-  ( ( ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B }
)  /\  ( z  e.  { (/) ,  A }  /\  w  e.  { (/) ,  B } ) )  /\  ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) )  ->  x  =  ( (  _I 
`  A )  X.  (  _I  `  B
) ) )
4140ex 434 . . . . . . . . . 10  |-  ( ( x  e.  ( {
(/) ,  A }  tX  { (/) ,  B }
)  /\  ( z  e.  { (/) ,  A }  /\  w  e.  { (/) ,  B } ) )  ->  ( ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x )  ->  x  =  ( (  _I  `  A )  X.  (  _I  `  B
) ) ) )
4241rexlimdvva 2966 . . . . . . . . 9  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  -> 
( E. z  e. 
{ (/) ,  A } E. w  e.  { (/) ,  B }  ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x )  ->  x  =  ( (  _I  `  A )  X.  (  _I  `  B
) ) ) )
437, 42syld 44 . . . . . . . 8  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  -> 
( y  e.  x  ->  x  =  ( (  _I  `  A )  X.  (  _I  `  B ) ) ) )
4443exlimdv 1700 . . . . . . 7  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  -> 
( E. y  y  e.  x  ->  x  =  ( (  _I 
`  A )  X.  (  _I  `  B
) ) ) )
451, 44syl5bi 217 . . . . . 6  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  -> 
( -.  x  =  (/)  ->  x  =  ( (  _I  `  A
)  X.  (  _I 
`  B ) ) ) )
4645orrd 378 . . . . 5  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  -> 
( x  =  (/)  \/  x  =  ( (  _I  `  A )  X.  (  _I  `  B ) ) ) )
47 vex 3121 . . . . . 6  |-  x  e. 
_V
4847elpr 4050 . . . . 5  |-  ( x  e.  { (/) ,  ( (  _I  `  A
)  X.  (  _I 
`  B ) ) }  <->  ( x  =  (/)  \/  x  =  ( (  _I  `  A
)  X.  (  _I 
`  B ) ) ) )
4946, 48sylibr 212 . . . 4  |-  ( x  e.  ( { (/) ,  A }  tX  { (/) ,  B } )  ->  x  e.  { (/) ,  ( (  _I  `  A
)  X.  (  _I 
`  B ) ) } )
5049ssriv 3513 . . 3  |-  ( {
(/) ,  A }  tX  { (/) ,  B }
)  C_  { (/) ,  ( (  _I  `  A
)  X.  (  _I 
`  B ) ) }
519toptopon 19280 . . . . . . 7  |-  ( {
(/) ,  A }  e.  Top  <->  { (/) ,  A }  e.  (TopOn `  (  _I  `  A ) ) )
522, 51mpbi 208 . . . . . 6  |-  { (/) ,  A }  e.  (TopOn `  (  _I  `  A
) )
5310toptopon 19280 . . . . . . 7  |-  ( {
(/) ,  B }  e.  Top  <->  { (/) ,  B }  e.  (TopOn `  (  _I  `  B ) ) )
543, 53mpbi 208 . . . . . 6  |-  { (/) ,  B }  e.  (TopOn `  (  _I  `  B
) )
55 txtopon 19937 . . . . . 6  |-  ( ( { (/) ,  A }  e.  (TopOn `  (  _I  `  A ) )  /\  {
(/) ,  B }  e.  (TopOn `  (  _I  `  B ) ) )  ->  ( { (/) ,  A }  tX  { (/) ,  B } )  e.  (TopOn `  ( (  _I  `  A )  X.  (  _I  `  B
) ) ) )
5652, 54, 55mp2an 672 . . . . 5  |-  ( {
(/) ,  A }  tX  { (/) ,  B }
)  e.  (TopOn `  ( (  _I  `  A )  X.  (  _I  `  B ) ) )
57 topgele 19281 . . . . 5  |-  ( ( { (/) ,  A }  tX  { (/) ,  B }
)  e.  (TopOn `  ( (  _I  `  A )  X.  (  _I  `  B ) ) )  ->  ( { (/)
,  ( (  _I 
`  A )  X.  (  _I  `  B
) ) }  C_  ( { (/) ,  A }  tX  { (/) ,  B }
)  /\  ( { (/)
,  A }  tX  {
(/) ,  B }
)  C_  ~P (
(  _I  `  A
)  X.  (  _I 
`  B ) ) ) )
5856, 57ax-mp 5 . . . 4  |-  ( {
(/) ,  ( (  _I  `  A )  X.  (  _I  `  B
) ) }  C_  ( { (/) ,  A }  tX  { (/) ,  B }
)  /\  ( { (/)
,  A }  tX  {
(/) ,  B }
)  C_  ~P (
(  _I  `  A
)  X.  (  _I 
`  B ) ) )
5958simpli 458 . . 3  |-  { (/) ,  ( (  _I  `  A )  X.  (  _I  `  B ) ) }  C_  ( { (/)
,  A }  tX  {
(/) ,  B }
)
6050, 59eqssi 3525 . 2  |-  ( {
(/) ,  A }  tX  { (/) ,  B }
)  =  { (/) ,  ( (  _I  `  A )  X.  (  _I  `  B ) ) }
61 txindislem 19979 . . 3  |-  ( (  _I  `  A )  X.  (  _I  `  B ) )  =  (  _I  `  ( A  X.  B ) )
6261preq2i 4115 . 2  |-  { (/) ,  ( (  _I  `  A )  X.  (  _I  `  B ) ) }  =  { (/) ,  (  _I  `  ( A  X.  B ) ) }
63 indislem 19346 . 2  |-  { (/) ,  (  _I  `  ( A  X.  B ) ) }  =  { (/) ,  ( A  X.  B
) }
6460, 62, 633eqtri 2500 1  |-  ( {
(/) ,  A }  tX  { (/) ,  B }
)  =  { (/) ,  ( A  X.  B
) }
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1379   E.wex 1596    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818    C_ wss 3481   (/)c0 3790   ~Pcpw 4015   {cpr 4034   U.cuni 4250    _I cid 4795    X. cxp 5002   ` cfv 5593  (class class class)co 6294   Topctop 19240  TopOnctopon 19241    tX ctx 19906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4573  ax-nul 4581  ax-pow 4630  ax-pr 4691  ax-un 6586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4251  df-iun 4332  df-br 4453  df-opab 4511  df-mpt 4512  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012  df-co 5013  df-dm 5014  df-rn 5015  df-res 5016  df-ima 5017  df-iota 5556  df-fun 5595  df-fn 5596  df-f 5597  df-fv 5601  df-ov 6297  df-oprab 6298  df-mpt2 6299  df-1st 6794  df-2nd 6795  df-topgen 14711  df-top 19245  df-bases 19247  df-topon 19248  df-tx 19908
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator