MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txdis Structured version   Visualization version   Unicode version

Theorem txdis 20640
Description: The topological product of discrete spaces is discrete. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
txdis  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX  ~P B )  =  ~P ( A  X.  B
) )

Proof of Theorem txdis
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 distop 20004 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
2 distop 20004 . . . . 5  |-  ( B  e.  W  ->  ~P B  e.  Top )
3 unipw 4649 . . . . . . 7  |-  U. ~P A  =  A
43eqcomi 2459 . . . . . 6  |-  A  = 
U. ~P A
5 unipw 4649 . . . . . . 7  |-  U. ~P B  =  B
65eqcomi 2459 . . . . . 6  |-  B  = 
U. ~P B
74, 6txuni 20600 . . . . 5  |-  ( ( ~P A  e.  Top  /\ 
~P B  e.  Top )  ->  ( A  X.  B )  =  U. ( ~P A  tX  ~P B ) )
81, 2, 7syl2an 480 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  =  U. ( ~P A  tX  ~P B
) )
9 eqimss2 3484 . . . 4  |-  ( ( A  X.  B )  =  U. ( ~P A  tX  ~P B
)  ->  U. ( ~P A  tX  ~P B
)  C_  ( A  X.  B ) )
108, 9syl 17 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U. ( ~P A  tX 
~P B )  C_  ( A  X.  B
) )
11 sspwuni 4366 . . 3  |-  ( ( ~P A  tX  ~P B )  C_  ~P ( A  X.  B
)  <->  U. ( ~P A  tX 
~P B )  C_  ( A  X.  B
) )
1210, 11sylibr 216 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX  ~P B )  C_  ~P ( A  X.  B
) )
13 elelpwi 3961 . . . . . . . . 9  |-  ( ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) )  ->  y  e.  ( A  X.  B ) )
1413adantl 468 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  y  e.  ( A  X.  B ) )
15 xp1st 6820 . . . . . . . 8  |-  ( y  e.  ( A  X.  B )  ->  ( 1st `  y )  e.  A )
16 snelpwi 4644 . . . . . . . 8  |-  ( ( 1st `  y )  e.  A  ->  { ( 1st `  y ) }  e.  ~P A
)
1714, 15, 163syl 18 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  { ( 1st `  y ) }  e.  ~P A )
18 xp2nd 6821 . . . . . . . 8  |-  ( y  e.  ( A  X.  B )  ->  ( 2nd `  y )  e.  B )
19 snelpwi 4644 . . . . . . . 8  |-  ( ( 2nd `  y )  e.  B  ->  { ( 2nd `  y ) }  e.  ~P B
)
2014, 18, 193syl 18 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  { ( 2nd `  y ) }  e.  ~P B )
21 ssnid 3996 . . . . . . . 8  |-  y  e. 
{ y }
22 1st2nd2 6827 . . . . . . . . . 10  |-  ( y  e.  ( A  X.  B )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
2314, 22syl 17 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
2423sneqd 3979 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  { y }  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
2521, 24syl5eleq 2534 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  y  e.  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } )
26 simprl 763 . . . . . . . . 9  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  y  e.  x
)
2723, 26eqeltrrd 2529 . . . . . . . 8  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  <. ( 1st `  y
) ,  ( 2nd `  y ) >.  e.  x
)
2827snssd 4116 . . . . . . 7  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. }  C_  x
)
29 xpeq1 4847 . . . . . . . . . 10  |-  ( z  =  { ( 1st `  y ) }  ->  ( z  X.  w )  =  ( { ( 1st `  y ) }  X.  w ) )
3029eleq2d 2513 . . . . . . . . 9  |-  ( z  =  { ( 1st `  y ) }  ->  ( y  e.  ( z  X.  w )  <->  y  e.  ( { ( 1st `  y
) }  X.  w
) ) )
3129sseq1d 3458 . . . . . . . . 9  |-  ( z  =  { ( 1st `  y ) }  ->  ( ( z  X.  w
)  C_  x  <->  ( {
( 1st `  y
) }  X.  w
)  C_  x )
)
3230, 31anbi12d 716 . . . . . . . 8  |-  ( z  =  { ( 1st `  y ) }  ->  ( ( y  e.  ( z  X.  w )  /\  ( z  X.  w )  C_  x
)  <->  ( y  e.  ( { ( 1st `  y ) }  X.  w )  /\  ( { ( 1st `  y
) }  X.  w
)  C_  x )
) )
33 xpeq2 4848 . . . . . . . . . . 11  |-  ( w  =  { ( 2nd `  y ) }  ->  ( { ( 1st `  y
) }  X.  w
)  =  ( { ( 1st `  y
) }  X.  {
( 2nd `  y
) } ) )
34 fvex 5873 . . . . . . . . . . . 12  |-  ( 1st `  y )  e.  _V
35 fvex 5873 . . . . . . . . . . . 12  |-  ( 2nd `  y )  e.  _V
3634, 35xpsn 6064 . . . . . . . . . . 11  |-  ( { ( 1st `  y
) }  X.  {
( 2nd `  y
) } )  =  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }
3733, 36syl6eq 2500 . . . . . . . . . 10  |-  ( w  =  { ( 2nd `  y ) }  ->  ( { ( 1st `  y
) }  X.  w
)  =  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. } )
3837eleq2d 2513 . . . . . . . . 9  |-  ( w  =  { ( 2nd `  y ) }  ->  ( y  e.  ( { ( 1st `  y
) }  X.  w
)  <->  y  e.  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. } ) )
3937sseq1d 3458 . . . . . . . . 9  |-  ( w  =  { ( 2nd `  y ) }  ->  ( ( { ( 1st `  y ) }  X.  w )  C_  x  <->  {
<. ( 1st `  y
) ,  ( 2nd `  y ) >. }  C_  x ) )
4038, 39anbi12d 716 . . . . . . . 8  |-  ( w  =  { ( 2nd `  y ) }  ->  ( ( y  e.  ( { ( 1st `  y
) }  X.  w
)  /\  ( {
( 1st `  y
) }  X.  w
)  C_  x )  <->  ( y  e.  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. }  /\  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  C_  x ) ) )
4132, 40rspc2ev 3160 . . . . . . 7  |-  ( ( { ( 1st `  y
) }  e.  ~P A  /\  { ( 2nd `  y ) }  e.  ~P B  /\  (
y  e.  { <. ( 1st `  y ) ,  ( 2nd `  y
) >. }  /\  { <. ( 1st `  y
) ,  ( 2nd `  y ) >. }  C_  x ) )  ->  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) )
4217, 20, 25, 28, 41syl112anc 1271 . . . . . 6  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  ( y  e.  x  /\  x  e.  ~P ( A  X.  B ) ) )  ->  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) )
4342expr 619 . . . . 5  |-  ( ( ( A  e.  V  /\  B  e.  W
)  /\  y  e.  x )  ->  (
x  e.  ~P ( A  X.  B )  ->  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w
)  /\  ( z  X.  w )  C_  x
) ) )
4443ralrimdva 2805 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  ~P ( A  X.  B
)  ->  A. y  e.  x  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x ) ) )
45 eltx 20576 . . . . 5  |-  ( ( ~P A  e.  Top  /\ 
~P B  e.  Top )  ->  ( x  e.  ( ~P A  tX  ~P B )  <->  A. y  e.  x  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x ) ) )
461, 2, 45syl2an 480 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  ( ~P A  tX  ~P B )  <->  A. y  e.  x  E. z  e.  ~P  A E. w  e.  ~P  B ( y  e.  ( z  X.  w )  /\  (
z  X.  w ) 
C_  x ) ) )
4744, 46sylibrd 238 . . 3  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( x  e.  ~P ( A  X.  B
)  ->  x  e.  ( ~P A  tX  ~P B ) ) )
4847ssrdv 3437 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ~P ( A  X.  B )  C_  ( ~P A  tX  ~P B
) )
4912, 48eqssd 3448 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( ~P A  tX  ~P B )  =  ~P ( A  X.  B
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 188    /\ wa 371    = wceq 1443    e. wcel 1886   A.wral 2736   E.wrex 2737    C_ wss 3403   ~Pcpw 3950   {csn 3967   <.cop 3973   U.cuni 4197    X. cxp 4831   ` cfv 5581  (class class class)co 6288   1stc1st 6788   2ndc2nd 6789   Topctop 19910    tX ctx 20568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6291  df-oprab 6292  df-mpt2 6293  df-1st 6790  df-2nd 6791  df-topgen 15335  df-top 19914  df-bases 19915  df-topon 19916  df-tx 20570
This theorem is referenced by:  distgp  21107
  Copyright terms: Public domain W3C validator