MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnpi Structured version   Unicode version

Theorem txcnpi 20213
Description: Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015.)
Hypotheses
Ref Expression
txcnpi.1  |-  ( ph  ->  J  e.  (TopOn `  X ) )
txcnpi.2  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
txcnpi.3  |-  ( ph  ->  F  e.  ( ( ( J  tX  K
)  CnP  L ) `  <. A ,  B >. ) )
txcnpi.4  |-  ( ph  ->  U  e.  L )
txcnpi.5  |-  ( ph  ->  A  e.  X )
txcnpi.6  |-  ( ph  ->  B  e.  Y )
txcnpi.7  |-  ( ph  ->  ( A F B )  e.  U )
Assertion
Ref Expression
txcnpi  |-  ( ph  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) ) )
Distinct variable groups:    v, u, A    u, B, v    u, F, v    u, J, v   
u, K, v    u, U, v
Allowed substitution hints:    ph( v, u)    L( v, u)    X( v, u)    Y( v, u)

Proof of Theorem txcnpi
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnpi.3 . . 3  |-  ( ph  ->  F  e.  ( ( ( J  tX  K
)  CnP  L ) `  <. A ,  B >. ) )
2 txcnpi.4 . . 3  |-  ( ph  ->  U  e.  L )
3 df-ov 6217 . . . 4  |-  ( A F B )  =  ( F `  <. A ,  B >. )
4 txcnpi.7 . . . 4  |-  ( ph  ->  ( A F B )  e.  U )
53, 4syl5eqelr 2485 . . 3  |-  ( ph  ->  ( F `  <. A ,  B >. )  e.  U )
6 cnpimaex 19862 . . 3  |-  ( ( F  e.  ( ( ( J  tX  K
)  CnP  L ) `  <. A ,  B >. )  /\  U  e.  L  /\  ( F `
 <. A ,  B >. )  e.  U )  ->  E. w  e.  ( J  tX  K ) ( <. A ,  B >.  e.  w  /\  ( F " w )  C_  U ) )
71, 2, 5, 6syl3anc 1226 . 2  |-  ( ph  ->  E. w  e.  ( J  tX  K ) ( <. A ,  B >.  e.  w  /\  ( F " w )  C_  U ) )
8 eqid 2392 . . . . . . . . . 10  |-  U. ( J  tX  K )  = 
U. ( J  tX  K )
9 eqid 2392 . . . . . . . . . 10  |-  U. L  =  U. L
108, 9cnpf 19853 . . . . . . . . 9  |-  ( F  e.  ( ( ( J  tX  K )  CnP  L ) `  <. A ,  B >. )  ->  F : U. ( J  tX  K ) --> U. L )
111, 10syl 16 . . . . . . . 8  |-  ( ph  ->  F : U. ( J  tX  K ) --> U. L )
1211adantr 463 . . . . . . 7  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  F : U. ( J  tX  K
) --> U. L )
13 ffun 5654 . . . . . . 7  |-  ( F : U. ( J 
tX  K ) --> U. L  ->  Fun  F )
1412, 13syl 16 . . . . . 6  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  Fun  F )
15 elssuni 4205 . . . . . . 7  |-  ( w  e.  ( J  tX  K )  ->  w  C_ 
U. ( J  tX  K ) )
16 fdm 5656 . . . . . . . . . 10  |-  ( F : U. ( J 
tX  K ) --> U. L  ->  dom  F  = 
U. ( J  tX  K ) )
1711, 16syl 16 . . . . . . . . 9  |-  ( ph  ->  dom  F  =  U. ( J  tX  K ) )
1817sseq2d 3458 . . . . . . . 8  |-  ( ph  ->  ( w  C_  dom  F  <-> 
w  C_  U. ( J  tX  K ) ) )
1918biimpar 483 . . . . . . 7  |-  ( (
ph  /\  w  C_  U. ( J  tX  K ) )  ->  w  C_  dom  F )
2015, 19sylan2 472 . . . . . 6  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  w  C_  dom  F )
21 funimass3 5918 . . . . . 6  |-  ( ( Fun  F  /\  w  C_ 
dom  F )  -> 
( ( F "
w )  C_  U  <->  w 
C_  ( `' F " U ) ) )
2214, 20, 21syl2anc 659 . . . . 5  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  ( ( F " w )  C_  U 
<->  w  C_  ( `' F " U ) ) )
2322anbi2d 701 . . . 4  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  ( ( <. A ,  B >.  e.  w  /\  ( F
" w )  C_  U )  <->  ( <. A ,  B >.  e.  w  /\  w  C_  ( `' F " U ) ) ) )
24 txcnpi.1 . . . . . . 7  |-  ( ph  ->  J  e.  (TopOn `  X ) )
25 txcnpi.2 . . . . . . 7  |-  ( ph  ->  K  e.  (TopOn `  Y ) )
26 eltx 20173 . . . . . . 7  |-  ( ( J  e.  (TopOn `  X )  /\  K  e.  (TopOn `  Y )
)  ->  ( w  e.  ( J  tX  K
)  <->  A. z  e.  w  E. u  e.  J  E. v  e.  K  ( z  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) ) )
2724, 25, 26syl2anc 659 . . . . . 6  |-  ( ph  ->  ( w  e.  ( J  tX  K )  <->  A. z  e.  w  E. u  e.  J  E. v  e.  K  ( z  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) ) )
2827biimpa 482 . . . . 5  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  A. z  e.  w  E. u  e.  J  E. v  e.  K  ( z  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
) )
29 eleq1 2464 . . . . . . . . . 10  |-  ( z  =  <. A ,  B >.  ->  ( z  e.  ( u  X.  v
)  <->  <. A ,  B >.  e.  ( u  X.  v ) ) )
3029anbi1d 702 . . . . . . . . 9  |-  ( z  =  <. A ,  B >.  ->  ( ( z  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  w )  <->  ( <. A ,  B >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) ) )
31302rexbidv 2913 . . . . . . . 8  |-  ( z  =  <. A ,  B >.  ->  ( E. u  e.  J  E. v  e.  K  ( z  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
)  <->  E. u  e.  J  E. v  e.  K  ( <. A ,  B >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  w ) ) )
3231rspccv 3145 . . . . . . 7  |-  ( A. z  e.  w  E. u  e.  J  E. v  e.  K  (
z  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  w )  ->  ( <. A ,  B >.  e.  w  ->  E. u  e.  J  E. v  e.  K  ( <. A ,  B >.  e.  ( u  X.  v )  /\  ( u  X.  v )  C_  w
) ) )
33 sstr2 3437 . . . . . . . . . . . . 13  |-  ( ( u  X.  v ) 
C_  w  ->  (
w  C_  ( `' F " U )  -> 
( u  X.  v
)  C_  ( `' F " U ) ) )
3433com12 31 . . . . . . . . . . . 12  |-  ( w 
C_  ( `' F " U )  ->  (
( u  X.  v
)  C_  w  ->  ( u  X.  v ) 
C_  ( `' F " U ) ) )
3534anim2d 563 . . . . . . . . . . 11  |-  ( w 
C_  ( `' F " U )  ->  (
( ( A  e.  u  /\  B  e.  v )  /\  (
u  X.  v ) 
C_  w )  -> 
( ( A  e.  u  /\  B  e.  v )  /\  (
u  X.  v ) 
C_  ( `' F " U ) ) ) )
36 opelxp 4956 . . . . . . . . . . . 12  |-  ( <. A ,  B >.  e.  ( u  X.  v
)  <->  ( A  e.  u  /\  B  e.  v ) )
3736anbi1i 693 . . . . . . . . . . 11  |-  ( (
<. A ,  B >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
)  <->  ( ( A  e.  u  /\  B  e.  v )  /\  (
u  X.  v ) 
C_  w ) )
38 df-3an 973 . . . . . . . . . . 11  |-  ( ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) )  <-> 
( ( A  e.  u  /\  B  e.  v )  /\  (
u  X.  v ) 
C_  ( `' F " U ) ) )
3935, 37, 383imtr4g 270 . . . . . . . . . 10  |-  ( w 
C_  ( `' F " U )  ->  (
( <. A ,  B >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  w )  -> 
( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) ) ) )
4039reximdv 2866 . . . . . . . . 9  |-  ( w 
C_  ( `' F " U )  ->  ( E. v  e.  K  ( <. A ,  B >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  w )  ->  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) ) ) )
4140reximdv 2866 . . . . . . . 8  |-  ( w 
C_  ( `' F " U )  ->  ( E. u  e.  J  E. v  e.  K  ( <. A ,  B >.  e.  ( u  X.  v )  /\  (
u  X.  v ) 
C_  w )  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) ) ) )
4241com12 31 . . . . . . 7  |-  ( E. u  e.  J  E. v  e.  K  ( <. A ,  B >.  e.  ( u  X.  v
)  /\  ( u  X.  v )  C_  w
)  ->  ( w  C_  ( `' F " U )  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v )  C_  ( `' F " U ) ) ) )
4332, 42syl6 33 . . . . . 6  |-  ( A. z  e.  w  E. u  e.  J  E. v  e.  K  (
z  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  w )  ->  ( <. A ,  B >.  e.  w  ->  (
w  C_  ( `' F " U )  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) ) ) ) )
4443impd 429 . . . . 5  |-  ( A. z  e.  w  E. u  e.  J  E. v  e.  K  (
z  e.  ( u  X.  v )  /\  ( u  X.  v
)  C_  w )  ->  ( ( <. A ,  B >.  e.  w  /\  w  C_  ( `' F " U ) )  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) ) ) )
4528, 44syl 16 . . . 4  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  ( ( <. A ,  B >.  e.  w  /\  w  C_  ( `' F " U ) )  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v )  C_  ( `' F " U ) ) ) )
4623, 45sylbid 215 . . 3  |-  ( (
ph  /\  w  e.  ( J  tX  K ) )  ->  ( ( <. A ,  B >.  e.  w  /\  ( F
" w )  C_  U )  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v )  C_  ( `' F " U ) ) ) )
4746rexlimdva 2884 . 2  |-  ( ph  ->  ( E. w  e.  ( J  tX  K
) ( <. A ,  B >.  e.  w  /\  ( F " w ) 
C_  U )  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) ) ) )
487, 47mpd 15 1  |-  ( ph  ->  E. u  e.  J  E. v  e.  K  ( A  e.  u  /\  B  e.  v  /\  ( u  X.  v
)  C_  ( `' F " U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    /\ w3a 971    = wceq 1399    e. wcel 1836   A.wral 2742   E.wrex 2743    C_ wss 3402   <.cop 3963   U.cuni 4176    X. cxp 4924   `'ccnv 4925   dom cdm 4926   "cima 4929   Fun wfun 5503   -->wf 5505   ` cfv 5509  (class class class)co 6214  TopOnctopon 19499    CnP ccnp 19831    tX ctx 20165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1633  ax-4 1646  ax-5 1719  ax-6 1765  ax-7 1808  ax-8 1838  ax-9 1840  ax-10 1855  ax-11 1860  ax-12 1872  ax-13 2016  ax-ext 2370  ax-sep 4501  ax-nul 4509  ax-pow 4556  ax-pr 4614  ax-un 6509
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1628  df-nf 1632  df-sb 1758  df-eu 2232  df-mo 2233  df-clab 2378  df-cleq 2384  df-clel 2387  df-nfc 2542  df-ne 2589  df-ral 2747  df-rex 2748  df-rab 2751  df-v 3049  df-sbc 3266  df-csb 3362  df-dif 3405  df-un 3407  df-in 3409  df-ss 3416  df-nul 3725  df-if 3871  df-pw 3942  df-sn 3958  df-pr 3960  df-op 3964  df-uni 4177  df-iun 4258  df-br 4381  df-opab 4439  df-mpt 4440  df-id 4722  df-xp 4932  df-rel 4933  df-cnv 4934  df-co 4935  df-dm 4936  df-rn 4937  df-res 4938  df-ima 4939  df-iota 5473  df-fun 5511  df-fn 5512  df-f 5513  df-fv 5517  df-ov 6217  df-oprab 6218  df-mpt2 6219  df-1st 6717  df-2nd 6718  df-map 7358  df-topgen 14870  df-top 19503  df-topon 19506  df-cnp 19834  df-tx 20167
This theorem is referenced by:  tmdcn2  20692
  Copyright terms: Public domain W3C validator