MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnmpt Structured version   Visualization version   Unicode version

Theorem txcnmpt 20716
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnmpt.1  |-  W  = 
U. U
txcnmpt.2  |-  H  =  ( x  e.  W  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)
Assertion
Ref Expression
txcnmpt  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H  e.  ( U  Cn  ( R  tX  S
) ) )
Distinct variable groups:    x, F    x, G    x, R    x, S    x, U    x, W
Allowed substitution hint:    H( x)

Proof of Theorem txcnmpt
Dummy variables  s 
r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnmpt.1 . . . . . . 7  |-  W  = 
U. U
2 eqid 2471 . . . . . . 7  |-  U. R  =  U. R
31, 2cnf 20339 . . . . . 6  |-  ( F  e.  ( U  Cn  R )  ->  F : W --> U. R )
43adantr 472 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  F : W --> U. R
)
54ffvelrnda 6037 . . . 4  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  x  e.  W )  ->  ( F `  x )  e.  U. R )
6 eqid 2471 . . . . . . 7  |-  U. S  =  U. S
71, 6cnf 20339 . . . . . 6  |-  ( G  e.  ( U  Cn  S )  ->  G : W --> U. S )
87adantl 473 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  G : W --> U. S
)
98ffvelrnda 6037 . . . 4  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  x  e.  W )  ->  ( G `  x )  e.  U. S )
10 opelxpi 4871 . . . 4  |-  ( ( ( F `  x
)  e.  U. R  /\  ( G `  x
)  e.  U. S
)  ->  <. ( F `
 x ) ,  ( G `  x
) >.  e.  ( U. R  X.  U. S ) )
115, 9, 10syl2anc 673 . . 3  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  x  e.  W )  ->  <. ( F `  x ) ,  ( G `  x ) >.  e.  ( U. R  X.  U. S ) )
12 txcnmpt.2 . . 3  |-  H  =  ( x  e.  W  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)
1311, 12fmptd 6061 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H : W --> ( U. R  X.  U. S ) )
1412mptpreima 5335 . . . . . 6  |-  ( `' H " ( r  X.  s ) )  =  { x  e.  W  |  <. ( F `  x ) ,  ( G `  x ) >.  e.  ( r  X.  s ) }
154adantr 472 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  ->  F : W --> U. R
)
1615adantr 472 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  F : W --> U. R )
17 ffn 5739 . . . . . . . . . . . 12  |-  ( F : W --> U. R  ->  F  Fn  W )
18 elpreima 6017 . . . . . . . . . . . 12  |-  ( F  Fn  W  ->  (
x  e.  ( `' F " r )  <-> 
( x  e.  W  /\  ( F `  x
)  e.  r ) ) )
1916, 17, 183syl 18 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( `' F " r )  <-> 
( x  e.  W  /\  ( F `  x
)  e.  r ) ) )
20 ibar 512 . . . . . . . . . . . 12  |-  ( x  e.  W  ->  (
( F `  x
)  e.  r  <->  ( x  e.  W  /\  ( F `  x )  e.  r ) ) )
2120adantl 473 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
( F `  x
)  e.  r  <->  ( x  e.  W  /\  ( F `  x )  e.  r ) ) )
2219, 21bitr4d 264 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( `' F " r )  <-> 
( F `  x
)  e.  r ) )
238ad2antrr 740 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  G : W --> U. S )
24 ffn 5739 . . . . . . . . . . . 12  |-  ( G : W --> U. S  ->  G  Fn  W )
25 elpreima 6017 . . . . . . . . . . . 12  |-  ( G  Fn  W  ->  (
x  e.  ( `' G " s )  <-> 
( x  e.  W  /\  ( G `  x
)  e.  s ) ) )
2623, 24, 253syl 18 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( `' G " s )  <-> 
( x  e.  W  /\  ( G `  x
)  e.  s ) ) )
27 ibar 512 . . . . . . . . . . . 12  |-  ( x  e.  W  ->  (
( G `  x
)  e.  s  <->  ( x  e.  W  /\  ( G `  x )  e.  s ) ) )
2827adantl 473 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
( G `  x
)  e.  s  <->  ( x  e.  W  /\  ( G `  x )  e.  s ) ) )
2926, 28bitr4d 264 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( `' G " s )  <-> 
( G `  x
)  e.  s ) )
3022, 29anbi12d 725 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
( x  e.  ( `' F " r )  /\  x  e.  ( `' G " s ) )  <->  ( ( F `
 x )  e.  r  /\  ( G `
 x )  e.  s ) ) )
31 elin 3608 . . . . . . . . 9  |-  ( x  e.  ( ( `' F " r )  i^i  ( `' G " s ) )  <->  ( x  e.  ( `' F "
r )  /\  x  e.  ( `' G "
s ) ) )
32 opelxp 4869 . . . . . . . . 9  |-  ( <.
( F `  x
) ,  ( G `
 x ) >.  e.  ( r  X.  s
)  <->  ( ( F `
 x )  e.  r  /\  ( G `
 x )  e.  s ) )
3330, 31, 323bitr4g 296 . . . . . . . 8  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( ( `' F " r )  i^i  ( `' G " s ) )  <->  <. ( F `
 x ) ,  ( G `  x
) >.  e.  ( r  X.  s ) ) )
3433rabbi2dva 3631 . . . . . . 7  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( W  i^i  (
( `' F "
r )  i^i  ( `' G " s ) ) )  =  {
x  e.  W  |  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( r  X.  s
) } )
35 inss1 3643 . . . . . . . . . 10  |-  ( ( `' F " r )  i^i  ( `' G " s ) )  C_  ( `' F " r )
36 cnvimass 5194 . . . . . . . . . 10  |-  ( `' F " r ) 
C_  dom  F
3735, 36sstri 3427 . . . . . . . . 9  |-  ( ( `' F " r )  i^i  ( `' G " s ) )  C_  dom  F
38 fdm 5745 . . . . . . . . . 10  |-  ( F : W --> U. R  ->  dom  F  =  W )
3915, 38syl 17 . . . . . . . . 9  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  ->  dom  F  =  W )
4037, 39syl5sseq 3466 . . . . . . . 8  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( ( `' F " r )  i^i  ( `' G " s ) )  C_  W )
41 dfss1 3628 . . . . . . . 8  |-  ( ( ( `' F "
r )  i^i  ( `' G " s ) )  C_  W  <->  ( W  i^i  ( ( `' F " r )  i^i  ( `' G " s ) ) )  =  ( ( `' F "
r )  i^i  ( `' G " s ) ) )
4240, 41sylib 201 . . . . . . 7  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( W  i^i  (
( `' F "
r )  i^i  ( `' G " s ) ) )  =  ( ( `' F "
r )  i^i  ( `' G " s ) ) )
4334, 42eqtr3d 2507 . . . . . 6  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  ->  { x  e.  W  |  <. ( F `  x ) ,  ( G `  x )
>.  e.  ( r  X.  s ) }  =  ( ( `' F " r )  i^i  ( `' G " s ) ) )
4414, 43syl5eq 2517 . . . . 5  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( `' H "
( r  X.  s
) )  =  ( ( `' F "
r )  i^i  ( `' G " s ) ) )
45 cntop1 20333 . . . . . . . 8  |-  ( G  e.  ( U  Cn  S )  ->  U  e.  Top )
4645adantl 473 . . . . . . 7  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U  e.  Top )
4746adantr 472 . . . . . 6  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  ->  U  e.  Top )
48 cnima 20358 . . . . . . 7  |-  ( ( F  e.  ( U  Cn  R )  /\  r  e.  R )  ->  ( `' F "
r )  e.  U
)
4948ad2ant2r 761 . . . . . 6  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( `' F "
r )  e.  U
)
50 cnima 20358 . . . . . . 7  |-  ( ( G  e.  ( U  Cn  S )  /\  s  e.  S )  ->  ( `' G "
s )  e.  U
)
5150ad2ant2l 760 . . . . . 6  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( `' G "
s )  e.  U
)
52 inopn 20006 . . . . . 6  |-  ( ( U  e.  Top  /\  ( `' F " r )  e.  U  /\  ( `' G " s )  e.  U )  -> 
( ( `' F " r )  i^i  ( `' G " s ) )  e.  U )
5347, 49, 51, 52syl3anc 1292 . . . . 5  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( ( `' F " r )  i^i  ( `' G " s ) )  e.  U )
5444, 53eqeltrd 2549 . . . 4  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( `' H "
( r  X.  s
) )  e.  U
)
5554ralrimivva 2814 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  A. r  e.  R  A. s  e.  S  ( `' H " ( r  X.  s ) )  e.  U )
56 vex 3034 . . . . . 6  |-  r  e. 
_V
57 vex 3034 . . . . . 6  |-  s  e. 
_V
5856, 57xpex 6614 . . . . 5  |-  ( r  X.  s )  e. 
_V
5958rgen2w 2769 . . . 4  |-  A. r  e.  R  A. s  e.  S  ( r  X.  s )  e.  _V
60 eqid 2471 . . . . 5  |-  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  =  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )
61 imaeq2 5170 . . . . . 6  |-  ( z  =  ( r  X.  s )  ->  ( `' H " z )  =  ( `' H " ( r  X.  s
) ) )
6261eleq1d 2533 . . . . 5  |-  ( z  =  ( r  X.  s )  ->  (
( `' H "
z )  e.  U  <->  ( `' H " ( r  X.  s ) )  e.  U ) )
6360, 62ralrnmpt2 6430 . . . 4  |-  ( A. r  e.  R  A. s  e.  S  (
r  X.  s )  e.  _V  ->  ( A. z  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) ( `' H " z )  e.  U  <->  A. r  e.  R  A. s  e.  S  ( `' H " ( r  X.  s ) )  e.  U ) )
6459, 63ax-mp 5 . . 3  |-  ( A. z  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ( `' H "
z )  e.  U  <->  A. r  e.  R  A. s  e.  S  ( `' H " ( r  X.  s ) )  e.  U )
6555, 64sylibr 217 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  A. z  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) ( `' H " z )  e.  U )
661toptopon 20025 . . . 4  |-  ( U  e.  Top  <->  U  e.  (TopOn `  W ) )
6746, 66sylib 201 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U  e.  (TopOn `  W
) )
68 cntop2 20334 . . . 4  |-  ( F  e.  ( U  Cn  R )  ->  R  e.  Top )
69 cntop2 20334 . . . 4  |-  ( G  e.  ( U  Cn  S )  ->  S  e.  Top )
70 eqid 2471 . . . . 5  |-  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )  =  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )
7170txval 20656 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
7268, 69, 71syl2an 485 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
732toptopon 20025 . . . . 5  |-  ( R  e.  Top  <->  R  e.  (TopOn `  U. R ) )
7468, 73sylib 201 . . . 4  |-  ( F  e.  ( U  Cn  R )  ->  R  e.  (TopOn `  U. R ) )
756toptopon 20025 . . . . 5  |-  ( S  e.  Top  <->  S  e.  (TopOn `  U. S ) )
7669, 75sylib 201 . . . 4  |-  ( G  e.  ( U  Cn  S )  ->  S  e.  (TopOn `  U. S ) )
77 txtopon 20683 . . . 4  |-  ( ( R  e.  (TopOn `  U. R )  /\  S  e.  (TopOn `  U. S ) )  ->  ( R  tX  S )  e.  (TopOn `  ( U. R  X.  U. S ) ) )
7874, 76, 77syl2an 485 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( R  tX  S
)  e.  (TopOn `  ( U. R  X.  U. S ) ) )
7967, 72, 78tgcn 20345 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( H  e.  ( U  Cn  ( R 
tX  S ) )  <-> 
( H : W --> ( U. R  X.  U. S )  /\  A. z  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ( `' H "
z )  e.  U
) ) )
8013, 65, 79mpbir2and 936 1  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H  e.  ( U  Cn  ( R  tX  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    = wceq 1452    e. wcel 1904   A.wral 2756   {crab 2760   _Vcvv 3031    i^i cin 3389    C_ wss 3390   <.cop 3965   U.cuni 4190    |-> cmpt 4454    X. cxp 4837   `'ccnv 4838   dom cdm 4839   ran crn 4840   "cima 4842    Fn wfn 5584   -->wf 5585   ` cfv 5589  (class class class)co 6308    |-> cmpt2 6310   topGenctg 15414   Topctop 19994  TopOnctopon 19995    Cn ccn 20317    tX ctx 20652
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-map 7492  df-topgen 15420  df-top 19998  df-bases 19999  df-topon 20000  df-cn 20320  df-tx 20654
This theorem is referenced by:  uptx  20717  hauseqlcld  20738  txkgen  20744  cnmpt1t  20757  cnmpt2t  20765  txpcon  30027
  Copyright terms: Public domain W3C validator