MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcnmpt Structured version   Unicode version

Theorem txcnmpt 20251
Description: A map into the product of two topological spaces is continuous if both of its projections are continuous. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
txcnmpt.1  |-  W  = 
U. U
txcnmpt.2  |-  H  =  ( x  e.  W  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)
Assertion
Ref Expression
txcnmpt  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H  e.  ( U  Cn  ( R  tX  S
) ) )
Distinct variable groups:    x, F    x, G    x, R    x, S    x, U    x, W
Allowed substitution hint:    H( x)

Proof of Theorem txcnmpt
Dummy variables  s 
r  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcnmpt.1 . . . . . . 7  |-  W  = 
U. U
2 eqid 2457 . . . . . . 7  |-  U. R  =  U. R
31, 2cnf 19874 . . . . . 6  |-  ( F  e.  ( U  Cn  R )  ->  F : W --> U. R )
43adantr 465 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  F : W --> U. R
)
54ffvelrnda 6032 . . . 4  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  x  e.  W )  ->  ( F `  x )  e.  U. R )
6 eqid 2457 . . . . . . 7  |-  U. S  =  U. S
71, 6cnf 19874 . . . . . 6  |-  ( G  e.  ( U  Cn  S )  ->  G : W --> U. S )
87adantl 466 . . . . 5  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  G : W --> U. S
)
98ffvelrnda 6032 . . . 4  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  x  e.  W )  ->  ( G `  x )  e.  U. S )
10 opelxpi 5040 . . . 4  |-  ( ( ( F `  x
)  e.  U. R  /\  ( G `  x
)  e.  U. S
)  ->  <. ( F `
 x ) ,  ( G `  x
) >.  e.  ( U. R  X.  U. S ) )
115, 9, 10syl2anc 661 . . 3  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  x  e.  W )  ->  <. ( F `  x ) ,  ( G `  x ) >.  e.  ( U. R  X.  U. S ) )
12 txcnmpt.2 . . 3  |-  H  =  ( x  e.  W  |-> 
<. ( F `  x
) ,  ( G `
 x ) >.
)
1311, 12fmptd 6056 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H : W --> ( U. R  X.  U. S ) )
1412mptpreima 5506 . . . . . 6  |-  ( `' H " ( r  X.  s ) )  =  { x  e.  W  |  <. ( F `  x ) ,  ( G `  x ) >.  e.  ( r  X.  s ) }
154adantr 465 . . . . . . . . . . . . 13  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  ->  F : W --> U. R
)
1615adantr 465 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  F : W --> U. R )
17 ffn 5737 . . . . . . . . . . . 12  |-  ( F : W --> U. R  ->  F  Fn  W )
18 elpreima 6008 . . . . . . . . . . . 12  |-  ( F  Fn  W  ->  (
x  e.  ( `' F " r )  <-> 
( x  e.  W  /\  ( F `  x
)  e.  r ) ) )
1916, 17, 183syl 20 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( `' F " r )  <-> 
( x  e.  W  /\  ( F `  x
)  e.  r ) ) )
20 ibar 504 . . . . . . . . . . . 12  |-  ( x  e.  W  ->  (
( F `  x
)  e.  r  <->  ( x  e.  W  /\  ( F `  x )  e.  r ) ) )
2120adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
( F `  x
)  e.  r  <->  ( x  e.  W  /\  ( F `  x )  e.  r ) ) )
2219, 21bitr4d 256 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( `' F " r )  <-> 
( F `  x
)  e.  r ) )
238ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  G : W --> U. S )
24 ffn 5737 . . . . . . . . . . . 12  |-  ( G : W --> U. S  ->  G  Fn  W )
25 elpreima 6008 . . . . . . . . . . . 12  |-  ( G  Fn  W  ->  (
x  e.  ( `' G " s )  <-> 
( x  e.  W  /\  ( G `  x
)  e.  s ) ) )
2623, 24, 253syl 20 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( `' G " s )  <-> 
( x  e.  W  /\  ( G `  x
)  e.  s ) ) )
27 ibar 504 . . . . . . . . . . . 12  |-  ( x  e.  W  ->  (
( G `  x
)  e.  s  <->  ( x  e.  W  /\  ( G `  x )  e.  s ) ) )
2827adantl 466 . . . . . . . . . . 11  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
( G `  x
)  e.  s  <->  ( x  e.  W  /\  ( G `  x )  e.  s ) ) )
2926, 28bitr4d 256 . . . . . . . . . 10  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( `' G " s )  <-> 
( G `  x
)  e.  s ) )
3022, 29anbi12d 710 . . . . . . . . 9  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
( x  e.  ( `' F " r )  /\  x  e.  ( `' G " s ) )  <->  ( ( F `
 x )  e.  r  /\  ( G `
 x )  e.  s ) ) )
31 elin 3683 . . . . . . . . 9  |-  ( x  e.  ( ( `' F " r )  i^i  ( `' G " s ) )  <->  ( x  e.  ( `' F "
r )  /\  x  e.  ( `' G "
s ) ) )
32 opelxp 5038 . . . . . . . . 9  |-  ( <.
( F `  x
) ,  ( G `
 x ) >.  e.  ( r  X.  s
)  <->  ( ( F `
 x )  e.  r  /\  ( G `
 x )  e.  s ) )
3330, 31, 323bitr4g 288 . . . . . . . 8  |-  ( ( ( ( F  e.  ( U  Cn  R
)  /\  G  e.  ( U  Cn  S
) )  /\  (
r  e.  R  /\  s  e.  S )
)  /\  x  e.  W )  ->  (
x  e.  ( ( `' F " r )  i^i  ( `' G " s ) )  <->  <. ( F `
 x ) ,  ( G `  x
) >.  e.  ( r  X.  s ) ) )
3433rabbi2dva 3702 . . . . . . 7  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( W  i^i  (
( `' F "
r )  i^i  ( `' G " s ) ) )  =  {
x  e.  W  |  <. ( F `  x
) ,  ( G `
 x ) >.  e.  ( r  X.  s
) } )
35 inss1 3714 . . . . . . . . . 10  |-  ( ( `' F " r )  i^i  ( `' G " s ) )  C_  ( `' F " r )
36 cnvimass 5367 . . . . . . . . . 10  |-  ( `' F " r ) 
C_  dom  F
3735, 36sstri 3508 . . . . . . . . 9  |-  ( ( `' F " r )  i^i  ( `' G " s ) )  C_  dom  F
38 fdm 5741 . . . . . . . . . 10  |-  ( F : W --> U. R  ->  dom  F  =  W )
3915, 38syl 16 . . . . . . . . 9  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  ->  dom  F  =  W )
4037, 39syl5sseq 3547 . . . . . . . 8  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( ( `' F " r )  i^i  ( `' G " s ) )  C_  W )
41 dfss1 3699 . . . . . . . 8  |-  ( ( ( `' F "
r )  i^i  ( `' G " s ) )  C_  W  <->  ( W  i^i  ( ( `' F " r )  i^i  ( `' G " s ) ) )  =  ( ( `' F "
r )  i^i  ( `' G " s ) ) )
4240, 41sylib 196 . . . . . . 7  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( W  i^i  (
( `' F "
r )  i^i  ( `' G " s ) ) )  =  ( ( `' F "
r )  i^i  ( `' G " s ) ) )
4334, 42eqtr3d 2500 . . . . . 6  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  ->  { x  e.  W  |  <. ( F `  x ) ,  ( G `  x )
>.  e.  ( r  X.  s ) }  =  ( ( `' F " r )  i^i  ( `' G " s ) ) )
4414, 43syl5eq 2510 . . . . 5  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( `' H "
( r  X.  s
) )  =  ( ( `' F "
r )  i^i  ( `' G " s ) ) )
45 cntop1 19868 . . . . . . . 8  |-  ( G  e.  ( U  Cn  S )  ->  U  e.  Top )
4645adantl 466 . . . . . . 7  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U  e.  Top )
4746adantr 465 . . . . . 6  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  ->  U  e.  Top )
48 cnima 19893 . . . . . . 7  |-  ( ( F  e.  ( U  Cn  R )  /\  r  e.  R )  ->  ( `' F "
r )  e.  U
)
4948ad2ant2r 746 . . . . . 6  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( `' F "
r )  e.  U
)
50 cnima 19893 . . . . . . 7  |-  ( ( G  e.  ( U  Cn  S )  /\  s  e.  S )  ->  ( `' G "
s )  e.  U
)
5150ad2ant2l 745 . . . . . 6  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( `' G "
s )  e.  U
)
52 inopn 19535 . . . . . 6  |-  ( ( U  e.  Top  /\  ( `' F " r )  e.  U  /\  ( `' G " s )  e.  U )  -> 
( ( `' F " r )  i^i  ( `' G " s ) )  e.  U )
5347, 49, 51, 52syl3anc 1228 . . . . 5  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( ( `' F " r )  i^i  ( `' G " s ) )  e.  U )
5444, 53eqeltrd 2545 . . . 4  |-  ( ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  /\  ( r  e.  R  /\  s  e.  S ) )  -> 
( `' H "
( r  X.  s
) )  e.  U
)
5554ralrimivva 2878 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  A. r  e.  R  A. s  e.  S  ( `' H " ( r  X.  s ) )  e.  U )
56 vex 3112 . . . . . 6  |-  r  e. 
_V
57 vex 3112 . . . . . 6  |-  s  e. 
_V
5856, 57xpex 6603 . . . . 5  |-  ( r  X.  s )  e. 
_V
5958rgen2w 2819 . . . 4  |-  A. r  e.  R  A. s  e.  S  ( r  X.  s )  e.  _V
60 eqid 2457 . . . . 5  |-  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )  =  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) )
61 imaeq2 5343 . . . . . 6  |-  ( z  =  ( r  X.  s )  ->  ( `' H " z )  =  ( `' H " ( r  X.  s
) ) )
6261eleq1d 2526 . . . . 5  |-  ( z  =  ( r  X.  s )  ->  (
( `' H "
z )  e.  U  <->  ( `' H " ( r  X.  s ) )  e.  U ) )
6360, 62ralrnmpt2 6416 . . . 4  |-  ( A. r  e.  R  A. s  e.  S  (
r  X.  s )  e.  _V  ->  ( A. z  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) ( `' H " z )  e.  U  <->  A. r  e.  R  A. s  e.  S  ( `' H " ( r  X.  s ) )  e.  U ) )
6459, 63ax-mp 5 . . 3  |-  ( A. z  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ( `' H "
z )  e.  U  <->  A. r  e.  R  A. s  e.  S  ( `' H " ( r  X.  s ) )  e.  U )
6555, 64sylibr 212 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  A. z  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s
) ) ( `' H " z )  e.  U )
661toptopon 19561 . . . 4  |-  ( U  e.  Top  <->  U  e.  (TopOn `  W ) )
6746, 66sylib 196 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  U  e.  (TopOn `  W
) )
68 cntop2 19869 . . . 4  |-  ( F  e.  ( U  Cn  R )  ->  R  e.  Top )
69 cntop2 19869 . . . 4  |-  ( G  e.  ( U  Cn  S )  ->  S  e.  Top )
70 eqid 2457 . . . . 5  |-  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )  =  ran  (
r  e.  R , 
s  e.  S  |->  ( r  X.  s ) )
7170txval 20191 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
7268, 69, 71syl2an 477 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( R  tX  S
)  =  ( topGen ` 
ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ) )
732toptopon 19561 . . . . 5  |-  ( R  e.  Top  <->  R  e.  (TopOn `  U. R ) )
7468, 73sylib 196 . . . 4  |-  ( F  e.  ( U  Cn  R )  ->  R  e.  (TopOn `  U. R ) )
756toptopon 19561 . . . . 5  |-  ( S  e.  Top  <->  S  e.  (TopOn `  U. S ) )
7669, 75sylib 196 . . . 4  |-  ( G  e.  ( U  Cn  S )  ->  S  e.  (TopOn `  U. S ) )
77 txtopon 20218 . . . 4  |-  ( ( R  e.  (TopOn `  U. R )  /\  S  e.  (TopOn `  U. S ) )  ->  ( R  tX  S )  e.  (TopOn `  ( U. R  X.  U. S ) ) )
7874, 76, 77syl2an 477 . . 3  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( R  tX  S
)  e.  (TopOn `  ( U. R  X.  U. S ) ) )
7967, 72, 78tgcn 19880 . 2  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  -> 
( H  e.  ( U  Cn  ( R 
tX  S ) )  <-> 
( H : W --> ( U. R  X.  U. S )  /\  A. z  e.  ran  ( r  e.  R ,  s  e.  S  |->  ( r  X.  s ) ) ( `' H "
z )  e.  U
) ) )
8013, 65, 79mpbir2and 922 1  |-  ( ( F  e.  ( U  Cn  R )  /\  G  e.  ( U  Cn  S ) )  ->  H  e.  ( U  Cn  ( R  tX  S
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1395    e. wcel 1819   A.wral 2807   {crab 2811   _Vcvv 3109    i^i cin 3470    C_ wss 3471   <.cop 4038   U.cuni 4251    |-> cmpt 4515    X. cxp 5006   `'ccnv 5007   dom cdm 5008   ran crn 5009   "cima 5011    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296    |-> cmpt2 6298   topGenctg 14855   Topctop 19521  TopOnctopon 19522    Cn ccn 19852    tX ctx 20187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-id 4804  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-fv 5602  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-1st 6799  df-2nd 6800  df-map 7440  df-topgen 14861  df-top 19526  df-bases 19528  df-topon 19529  df-cn 19855  df-tx 20189
This theorem is referenced by:  uptx  20252  hauseqlcld  20273  txkgen  20279  cnmpt1t  20292  cnmpt2t  20300  txpcon  28874
  Copyright terms: Public domain W3C validator