MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmplem2 Unicode version

Theorem txcmplem2 17627
Description: Lemma for txcmp 17628. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmp.x  |-  X  = 
U. R
txcmp.y  |-  Y  = 
U. S
txcmp.r  |-  ( ph  ->  R  e.  Comp )
txcmp.s  |-  ( ph  ->  S  e.  Comp )
txcmp.w  |-  ( ph  ->  W  C_  ( R  tX  S ) )
txcmp.u  |-  ( ph  ->  ( X  X.  Y
)  =  U. W
)
Assertion
Ref Expression
txcmplem2  |-  ( ph  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
Distinct variable groups:    v, S    v, Y    v, W    v, X
Allowed substitution hints:    ph( v)    R( v)

Proof of Theorem txcmplem2
Dummy variables  f  u  x  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcmp.s . . 3  |-  ( ph  ->  S  e.  Comp )
2 txcmp.x . . . . 5  |-  X  = 
U. R
3 txcmp.y . . . . 5  |-  Y  = 
U. S
4 txcmp.r . . . . . 6  |-  ( ph  ->  R  e.  Comp )
54adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  R  e.  Comp )
61adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  S  e.  Comp )
7 txcmp.w . . . . . 6  |-  ( ph  ->  W  C_  ( R  tX  S ) )
87adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  W  C_  ( R  tX  S
) )
9 txcmp.u . . . . . 6  |-  ( ph  ->  ( X  X.  Y
)  =  U. W
)
109adantr 452 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( X  X.  Y )  = 
U. W )
11 simpr 448 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  x  e.  Y )
122, 3, 5, 6, 8, 10, 11txcmplem1 17626 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  E. u  e.  S  ( x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
1312ralrimiva 2749 . . 3  |-  ( ph  ->  A. x  e.  Y  E. u  e.  S  ( x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
14 unieq 3984 . . . . 5  |-  ( v  =  ( f `  u )  ->  U. v  =  U. ( f `  u ) )
1514sseq2d 3336 . . . 4  |-  ( v  =  ( f `  u )  ->  (
( X  X.  u
)  C_  U. v  <->  ( X  X.  u ) 
C_  U. ( f `  u ) ) )
163, 15cmpcovf 17408 . . 3  |-  ( ( S  e.  Comp  /\  A. x  e.  Y  E. u  e.  S  (
x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  u
)  C_  U. v
) )  ->  E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) ) )
171, 13, 16syl2anc 643 . 2  |-  ( ph  ->  E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) ) )
18 simprrl 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
f : w --> ( ~P W  i^i  Fin )
)
19 ffn 5550 . . . . . . . . . . 11  |-  ( f : w --> ( ~P W  i^i  Fin )  ->  f  Fn  w )
20 fniunfv 5953 . . . . . . . . . . 11  |-  ( f  Fn  w  ->  U_ z  e.  w  ( f `  z )  =  U. ran  f )
2118, 19, 203syl 19 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  =  U. ran  f )
22 frn 5556 . . . . . . . . . . . . 13  |-  ( f : w --> ( ~P W  i^i  Fin )  ->  ran  f  C_  ( ~P W  i^i  Fin )
)
2318, 22syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  ran  f  C_  ( ~P W  i^i  Fin )
)
24 inss1 3521 . . . . . . . . . . . 12  |-  ( ~P W  i^i  Fin )  C_ 
~P W
2523, 24syl6ss 3320 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  ran  f  C_  ~P W
)
26 sspwuni 4136 . . . . . . . . . . 11  |-  ( ran  f  C_  ~P W  <->  U.
ran  f  C_  W
)
2725, 26sylib 189 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U. ran  f  C_  W
)
2821, 27eqsstrd 3342 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  C_  W )
29 vex 2919 . . . . . . . . . . 11  |-  w  e. 
_V
30 fvex 5701 . . . . . . . . . . 11  |-  ( f `
 z )  e. 
_V
3129, 30iunex 5950 . . . . . . . . . 10  |-  U_ z  e.  w  ( f `  z )  e.  _V
3231elpw 3765 . . . . . . . . 9  |-  ( U_ z  e.  w  (
f `  z )  e.  ~P W  <->  U_ z  e.  w  ( f `  z )  C_  W
)
3328, 32sylibr 204 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  ~P W
)
34 inss2 3522 . . . . . . . . . 10  |-  ( ~P S  i^i  Fin )  C_ 
Fin
35 simplr 732 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  w  e.  ( ~P S  i^i  Fin ) )
3634, 35sseldi 3306 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  w  e.  Fin )
37 inss2 3522 . . . . . . . . . . 11  |-  ( ~P W  i^i  Fin )  C_ 
Fin
38 fss 5558 . . . . . . . . . . 11  |-  ( ( f : w --> ( ~P W  i^i  Fin )  /\  ( ~P W  i^i  Fin )  C_  Fin )  ->  f : w --> Fin )
3918, 37, 38sylancl 644 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
f : w --> Fin )
40 ffvelrn 5827 . . . . . . . . . . 11  |-  ( ( f : w --> Fin  /\  z  e.  w )  ->  ( f `  z
)  e.  Fin )
4140ralrimiva 2749 . . . . . . . . . 10  |-  ( f : w --> Fin  ->  A. z  e.  w  ( f `  z )  e.  Fin )
4239, 41syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  ( f `  z
)  e.  Fin )
43 iunfi 7353 . . . . . . . . 9  |-  ( ( w  e.  Fin  /\  A. z  e.  w  ( f `  z )  e.  Fin )  ->  U_ z  e.  w  ( f `  z
)  e.  Fin )
4436, 42, 43syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  Fin )
45 elin 3490 . . . . . . . 8  |-  ( U_ z  e.  w  (
f `  z )  e.  ( ~P W  i^i  Fin )  <->  ( U_ z  e.  w  ( f `  z )  e.  ~P W  /\  U_ z  e.  w  ( f `  z )  e.  Fin ) )
4633, 44, 45sylanbrc 646 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  ( ~P W  i^i  Fin )
)
47 simprl 733 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  Y  =  U. w
)
48 uniiun 4104 . . . . . . . . . . . . 13  |-  U. w  =  U_ z  e.  w  z
4947, 48syl6eq 2452 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  Y  =  U_ z  e.  w  z )
5049xpeq2d 4861 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  ( X  X.  U_ z  e.  w  z ) )
51 xpiundi 4891 . . . . . . . . . . 11  |-  ( X  X.  U_ z  e.  w  z )  = 
U_ z  e.  w  ( X  X.  z
)
5250, 51syl6eq 2452 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U_ z  e.  w  ( X  X.  z ) )
53 simprrr 742 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
)
54 xpeq2 4852 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  ( X  X.  u )  =  ( X  X.  z
) )
55 fveq2 5687 . . . . . . . . . . . . . . 15  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
5655unieqd 3986 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  U. (
f `  u )  =  U. ( f `  z ) )
5754, 56sseq12d 3337 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
( X  X.  u
)  C_  U. (
f `  u )  <->  ( X  X.  z ) 
C_  U. ( f `  z ) ) )
5857cbvralv 2892 . . . . . . . . . . . 12  |-  ( A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
)  <->  A. z  e.  w  ( X  X.  z
)  C_  U. (
f `  z )
)
5953, 58sylib 189 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  ( X  X.  z
)  C_  U. (
f `  z )
)
60 ss2iun 4068 . . . . . . . . . . 11  |-  ( A. z  e.  w  ( X  X.  z )  C_  U. ( f `  z
)  ->  U_ z  e.  w  ( X  X.  z )  C_  U_ z  e.  w  U. (
f `  z )
)
6159, 60syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( X  X.  z
)  C_  U_ z  e.  w  U. ( f `
 z ) )
6252, 61eqsstrd 3342 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  C_  U_ z  e.  w  U. ( f `
 z ) )
6318ffvelrnda 5829 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( f `  z
)  e.  ( ~P W  i^i  Fin )
)
6424, 63sseldi 3306 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( f `  z
)  e.  ~P W
)
65 elpwi 3767 . . . . . . . . . . . . 13  |-  ( ( f `  z )  e.  ~P W  -> 
( f `  z
)  C_  W )
66 uniss 3996 . . . . . . . . . . . . 13  |-  ( ( f `  z ) 
C_  W  ->  U. (
f `  z )  C_ 
U. W )
6764, 65, 663syl 19 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  U. ( f `  z )  C_  U. W
)
689ad3antrrr 711 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( X  X.  Y
)  =  U. W
)
6967, 68sseqtr4d 3345 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  U. ( f `  z )  C_  ( X  X.  Y ) )
7069ralrimiva 2749 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y ) )
71 iunss 4092 . . . . . . . . . 10  |-  ( U_ z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y )  <->  A. z  e.  w  U. (
f `  z )  C_  ( X  X.  Y
) )
7270, 71sylibr 204 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y ) )
7362, 72eqssd 3325 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U_ z  e.  w  U. (
f `  z )
)
74 iuncom4 4060 . . . . . . . 8  |-  U_ z  e.  w  U. (
f `  z )  =  U. U_ z  e.  w  ( f `  z )
7573, 74syl6eq 2452 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U. U_ z  e.  w  (
f `  z )
)
76 unieq 3984 . . . . . . . . 9  |-  ( v  =  U_ z  e.  w  ( f `  z )  ->  U. v  =  U. U_ z  e.  w  ( f `  z ) )
7776eqeq2d 2415 . . . . . . . 8  |-  ( v  =  U_ z  e.  w  ( f `  z )  ->  (
( X  X.  Y
)  =  U. v  <->  ( X  X.  Y )  =  U. U_ z  e.  w  ( f `  z ) ) )
7877rspcev 3012 . . . . . . 7  |-  ( (
U_ z  e.  w  ( f `  z
)  e.  ( ~P W  i^i  Fin )  /\  ( X  X.  Y
)  =  U. U_ z  e.  w  (
f `  z )
)  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
7946, 75, 78syl2anc 643 . . . . . 6  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  Y
)  =  U. v
)
8079expr 599 . . . . 5  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  Y  =  U. w )  -> 
( ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) )  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8180exlimdv 1643 . . . 4  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  Y  =  U. w )  -> 
( E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
)  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8281expimpd 587 . . 3  |-  ( (
ph  /\  w  e.  ( ~P S  i^i  Fin ) )  ->  (
( Y  =  U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) )  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8382rexlimdva 2790 . 2  |-  ( ph  ->  ( E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) )  ->  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  Y
)  =  U. v
) )
8417, 83mpd 15 1  |-  ( ph  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   U.cuni 3975   U_ciun 4053    X. cxp 4835   ran crn 4838    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   Fincfn 7068   Compccmp 17403    tX ctx 17545
This theorem is referenced by:  txcmp  17628
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-fin 7072  df-topgen 13622  df-top 16918  df-bases 16920  df-cmp 17404  df-tx 17547
  Copyright terms: Public domain W3C validator