MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmplem2 Structured version   Unicode version

Theorem txcmplem2 19215
Description: Lemma for txcmp 19216. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmp.x  |-  X  = 
U. R
txcmp.y  |-  Y  = 
U. S
txcmp.r  |-  ( ph  ->  R  e.  Comp )
txcmp.s  |-  ( ph  ->  S  e.  Comp )
txcmp.w  |-  ( ph  ->  W  C_  ( R  tX  S ) )
txcmp.u  |-  ( ph  ->  ( X  X.  Y
)  =  U. W
)
Assertion
Ref Expression
txcmplem2  |-  ( ph  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
Distinct variable groups:    v, S    v, Y    v, W    v, X
Allowed substitution hints:    ph( v)    R( v)

Proof of Theorem txcmplem2
Dummy variables  f  u  x  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcmp.s . . 3  |-  ( ph  ->  S  e.  Comp )
2 txcmp.x . . . . 5  |-  X  = 
U. R
3 txcmp.y . . . . 5  |-  Y  = 
U. S
4 txcmp.r . . . . . 6  |-  ( ph  ->  R  e.  Comp )
54adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  R  e.  Comp )
61adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  S  e.  Comp )
7 txcmp.w . . . . . 6  |-  ( ph  ->  W  C_  ( R  tX  S ) )
87adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  W  C_  ( R  tX  S
) )
9 txcmp.u . . . . . 6  |-  ( ph  ->  ( X  X.  Y
)  =  U. W
)
109adantr 465 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  ( X  X.  Y )  = 
U. W )
11 simpr 461 . . . . 5  |-  ( (
ph  /\  x  e.  Y )  ->  x  e.  Y )
122, 3, 5, 6, 8, 10, 11txcmplem1 19214 . . . 4  |-  ( (
ph  /\  x  e.  Y )  ->  E. u  e.  S  ( x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
1312ralrimiva 2799 . . 3  |-  ( ph  ->  A. x  e.  Y  E. u  e.  S  ( x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
14 unieq 4099 . . . . 5  |-  ( v  =  ( f `  u )  ->  U. v  =  U. ( f `  u ) )
1514sseq2d 3384 . . . 4  |-  ( v  =  ( f `  u )  ->  (
( X  X.  u
)  C_  U. v  <->  ( X  X.  u ) 
C_  U. ( f `  u ) ) )
163, 15cmpcovf 18994 . . 3  |-  ( ( S  e.  Comp  /\  A. x  e.  Y  E. u  e.  S  (
x  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  u
)  C_  U. v
) )  ->  E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) ) )
171, 13, 16syl2anc 661 . 2  |-  ( ph  ->  E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) ) )
18 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
f : w --> ( ~P W  i^i  Fin )
)
19 ffn 5559 . . . . . . . . . . 11  |-  ( f : w --> ( ~P W  i^i  Fin )  ->  f  Fn  w )
20 fniunfv 5964 . . . . . . . . . . 11  |-  ( f  Fn  w  ->  U_ z  e.  w  ( f `  z )  =  U. ran  f )
2118, 19, 203syl 20 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  =  U. ran  f )
22 frn 5565 . . . . . . . . . . . . 13  |-  ( f : w --> ( ~P W  i^i  Fin )  ->  ran  f  C_  ( ~P W  i^i  Fin )
)
2318, 22syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  ran  f  C_  ( ~P W  i^i  Fin )
)
24 inss1 3570 . . . . . . . . . . . 12  |-  ( ~P W  i^i  Fin )  C_ 
~P W
2523, 24syl6ss 3368 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  ran  f  C_  ~P W
)
26 sspwuni 4256 . . . . . . . . . . 11  |-  ( ran  f  C_  ~P W  <->  U.
ran  f  C_  W
)
2725, 26sylib 196 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U. ran  f  C_  W
)
2821, 27eqsstrd 3390 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  C_  W )
29 vex 2975 . . . . . . . . . . 11  |-  w  e. 
_V
30 fvex 5701 . . . . . . . . . . 11  |-  ( f `
 z )  e. 
_V
3129, 30iunex 6557 . . . . . . . . . 10  |-  U_ z  e.  w  ( f `  z )  e.  _V
3231elpw 3866 . . . . . . . . 9  |-  ( U_ z  e.  w  (
f `  z )  e.  ~P W  <->  U_ z  e.  w  ( f `  z )  C_  W
)
3328, 32sylibr 212 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  ~P W
)
34 inss2 3571 . . . . . . . . . 10  |-  ( ~P S  i^i  Fin )  C_ 
Fin
35 simplr 754 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  w  e.  ( ~P S  i^i  Fin ) )
3634, 35sseldi 3354 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  w  e.  Fin )
37 inss2 3571 . . . . . . . . . . 11  |-  ( ~P W  i^i  Fin )  C_ 
Fin
38 fss 5567 . . . . . . . . . . 11  |-  ( ( f : w --> ( ~P W  i^i  Fin )  /\  ( ~P W  i^i  Fin )  C_  Fin )  ->  f : w --> Fin )
3918, 37, 38sylancl 662 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
f : w --> Fin )
40 ffvelrn 5841 . . . . . . . . . . 11  |-  ( ( f : w --> Fin  /\  z  e.  w )  ->  ( f `  z
)  e.  Fin )
4140ralrimiva 2799 . . . . . . . . . 10  |-  ( f : w --> Fin  ->  A. z  e.  w  ( f `  z )  e.  Fin )
4239, 41syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  ( f `  z
)  e.  Fin )
43 iunfi 7599 . . . . . . . . 9  |-  ( ( w  e.  Fin  /\  A. z  e.  w  ( f `  z )  e.  Fin )  ->  U_ z  e.  w  ( f `  z
)  e.  Fin )
4436, 42, 43syl2anc 661 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  Fin )
4533, 44elind 3540 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( f `  z
)  e.  ( ~P W  i^i  Fin )
)
46 simprl 755 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  Y  =  U. w
)
47 uniiun 4223 . . . . . . . . . . . . 13  |-  U. w  =  U_ z  e.  w  z
4846, 47syl6eq 2491 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  Y  =  U_ z  e.  w  z )
4948xpeq2d 4864 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  ( X  X.  U_ z  e.  w  z ) )
50 xpiundi 4893 . . . . . . . . . . 11  |-  ( X  X.  U_ z  e.  w  z )  = 
U_ z  e.  w  ( X  X.  z
)
5149, 50syl6eq 2491 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U_ z  e.  w  ( X  X.  z ) )
52 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
)
53 xpeq2 4855 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  ( X  X.  u )  =  ( X  X.  z
) )
54 fveq2 5691 . . . . . . . . . . . . . . 15  |-  ( u  =  z  ->  (
f `  u )  =  ( f `  z ) )
5554unieqd 4101 . . . . . . . . . . . . . 14  |-  ( u  =  z  ->  U. (
f `  u )  =  U. ( f `  z ) )
5653, 55sseq12d 3385 . . . . . . . . . . . . 13  |-  ( u  =  z  ->  (
( X  X.  u
)  C_  U. (
f `  u )  <->  ( X  X.  z ) 
C_  U. ( f `  z ) ) )
5756cbvralv 2947 . . . . . . . . . . . 12  |-  ( A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
)  <->  A. z  e.  w  ( X  X.  z
)  C_  U. (
f `  z )
)
5852, 57sylib 196 . . . . . . . . . . 11  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  ( X  X.  z
)  C_  U. (
f `  z )
)
59 ss2iun 4186 . . . . . . . . . . 11  |-  ( A. z  e.  w  ( X  X.  z )  C_  U. ( f `  z
)  ->  U_ z  e.  w  ( X  X.  z )  C_  U_ z  e.  w  U. (
f `  z )
)
6058, 59syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  ( X  X.  z
)  C_  U_ z  e.  w  U. ( f `
 z ) )
6151, 60eqsstrd 3390 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  C_  U_ z  e.  w  U. ( f `
 z ) )
6218ffvelrnda 5843 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( f `  z
)  e.  ( ~P W  i^i  Fin )
)
6324, 62sseldi 3354 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( f `  z
)  e.  ~P W
)
64 elpwi 3869 . . . . . . . . . . . . 13  |-  ( ( f `  z )  e.  ~P W  -> 
( f `  z
)  C_  W )
65 uniss 4112 . . . . . . . . . . . . 13  |-  ( ( f `  z ) 
C_  W  ->  U. (
f `  z )  C_ 
U. W )
6663, 64, 653syl 20 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  U. ( f `  z )  C_  U. W
)
679ad3antrrr 729 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  ( X  X.  Y
)  =  U. W
)
6866, 67sseqtr4d 3393 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  = 
U. w  /\  (
f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) ) )  /\  z  e.  w )  ->  U. ( f `  z )  C_  ( X  X.  Y ) )
6968ralrimiva 2799 . . . . . . . . . 10  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  A. z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y ) )
70 iunss 4211 . . . . . . . . . 10  |-  ( U_ z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y )  <->  A. z  e.  w  U. (
f `  z )  C_  ( X  X.  Y
) )
7169, 70sylibr 212 . . . . . . . . 9  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  U_ z  e.  w  U. ( f `  z
)  C_  ( X  X.  Y ) )
7261, 71eqssd 3373 . . . . . . . 8  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U_ z  e.  w  U. (
f `  z )
)
73 iuncom4 4178 . . . . . . . 8  |-  U_ z  e.  w  U. (
f `  z )  =  U. U_ z  e.  w  ( f `  z )
7472, 73syl6eq 2491 . . . . . . 7  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  -> 
( X  X.  Y
)  =  U. U_ z  e.  w  (
f `  z )
)
75 unieq 4099 . . . . . . . . 9  |-  ( v  =  U_ z  e.  w  ( f `  z )  ->  U. v  =  U. U_ z  e.  w  ( f `  z ) )
7675eqeq2d 2454 . . . . . . . 8  |-  ( v  =  U_ z  e.  w  ( f `  z )  ->  (
( X  X.  Y
)  =  U. v  <->  ( X  X.  Y )  =  U. U_ z  e.  w  ( f `  z ) ) )
7776rspcev 3073 . . . . . . 7  |-  ( (
U_ z  e.  w  ( f `  z
)  e.  ( ~P W  i^i  Fin )  /\  ( X  X.  Y
)  =  U. U_ z  e.  w  (
f `  z )
)  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
7845, 74, 77syl2anc 661 . . . . . 6  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  ( Y  =  U. w  /\  ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. (
f `  u )
) ) )  ->  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  Y
)  =  U. v
)
7978expr 615 . . . . 5  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  Y  =  U. w )  -> 
( ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) )  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8079exlimdv 1690 . . . 4  |-  ( ( ( ph  /\  w  e.  ( ~P S  i^i  Fin ) )  /\  Y  =  U. w )  -> 
( E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
)  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8180expimpd 603 . . 3  |-  ( (
ph  /\  w  e.  ( ~P S  i^i  Fin ) )  ->  (
( Y  =  U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u
)  C_  U. (
f `  u )
) )  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v ) )
8281rexlimdva 2841 . 2  |-  ( ph  ->  ( E. w  e.  ( ~P S  i^i  Fin ) ( Y  = 
U. w  /\  E. f ( f : w --> ( ~P W  i^i  Fin )  /\  A. u  e.  w  ( X  X.  u )  C_  U. ( f `  u
) ) )  ->  E. v  e.  ( ~P W  i^i  Fin )
( X  X.  Y
)  =  U. v
) )
8317, 82mpd 15 1  |-  ( ph  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  Y )  =  U. v )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369   E.wex 1586    e. wcel 1756   A.wral 2715   E.wrex 2716    i^i cin 3327    C_ wss 3328   ~Pcpw 3860   U.cuni 4091   U_ciun 4171    X. cxp 4838   ran crn 4841    Fn wfn 5413   -->wf 5414   ` cfv 5418  (class class class)co 6091   Fincfn 7310   Compccmp 18989    tX ctx 19133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-pss 3344  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-tp 3882  df-op 3884  df-uni 4092  df-int 4129  df-iun 4173  df-iin 4174  df-br 4293  df-opab 4351  df-mpt 4352  df-tr 4386  df-eprel 4632  df-id 4636  df-po 4641  df-so 4642  df-fr 4679  df-we 4681  df-ord 4722  df-on 4723  df-lim 4724  df-suc 4725  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-om 6477  df-1st 6577  df-2nd 6578  df-recs 6832  df-rdg 6866  df-1o 6920  df-oadd 6924  df-er 7101  df-en 7311  df-dom 7312  df-fin 7314  df-topgen 14382  df-top 18503  df-bases 18505  df-cmp 18990  df-tx 19135
This theorem is referenced by:  txcmp  19216
  Copyright terms: Public domain W3C validator