MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmplem1 Unicode version

Theorem txcmplem1 17626
Description: Lemma for txcmp 17628. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmp.x  |-  X  = 
U. R
txcmp.y  |-  Y  = 
U. S
txcmp.r  |-  ( ph  ->  R  e.  Comp )
txcmp.s  |-  ( ph  ->  S  e.  Comp )
txcmp.w  |-  ( ph  ->  W  C_  ( R  tX  S ) )
txcmp.u  |-  ( ph  ->  ( X  X.  Y
)  =  U. W
)
txcmp.a  |-  ( ph  ->  A  e.  Y )
Assertion
Ref Expression
txcmplem1  |-  ( ph  ->  E. u  e.  S  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
Distinct variable groups:    u, A    v, u, S    u, Y, v    u, W, v    u, X, v    ph, u    u, R
Allowed substitution hints:    ph( v)    A( v)    R( v)

Proof of Theorem txcmplem1
Dummy variables  f 
k  r  s  t  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 txcmp.r . . 3  |-  ( ph  ->  R  e.  Comp )
2 id 20 . . . . . . . . 9  |-  ( x  e.  X  ->  x  e.  X )
3 txcmp.a . . . . . . . . 9  |-  ( ph  ->  A  e.  Y )
4 opelxpi 4869 . . . . . . . . 9  |-  ( ( x  e.  X  /\  A  e.  Y )  -> 
<. x ,  A >.  e.  ( X  X.  Y
) )
52, 3, 4syl2anr 465 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  <. x ,  A >.  e.  ( X  X.  Y ) )
6 txcmp.u . . . . . . . . 9  |-  ( ph  ->  ( X  X.  Y
)  =  U. W
)
76adantr 452 . . . . . . . 8  |-  ( (
ph  /\  x  e.  X )  ->  ( X  X.  Y )  = 
U. W )
85, 7eleqtrd 2480 . . . . . . 7  |-  ( (
ph  /\  x  e.  X )  ->  <. x ,  A >.  e.  U. W
)
9 eluni2 3979 . . . . . . 7  |-  ( <.
x ,  A >.  e. 
U. W  <->  E. k  e.  W  <. x ,  A >.  e.  k
)
108, 9sylib 189 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  E. k  e.  W  <. x ,  A >.  e.  k
)
11 txcmp.w . . . . . . . . . . . 12  |-  ( ph  ->  W  C_  ( R  tX  S ) )
1211adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  W  C_  ( R  tX  S
) )
1312sselda 3308 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  W )  ->  k  e.  ( R  tX  S
) )
14 txcmp.s . . . . . . . . . . . . 13  |-  ( ph  ->  S  e.  Comp )
15 eltx 17553 . . . . . . . . . . . . 13  |-  ( ( R  e.  Comp  /\  S  e.  Comp )  ->  (
k  e.  ( R 
tX  S )  <->  A. y  e.  k  E. r  e.  R  E. s  e.  S  ( y  e.  ( r  X.  s
)  /\  ( r  X.  s )  C_  k
) ) )
161, 14, 15syl2anc 643 . . . . . . . . . . . 12  |-  ( ph  ->  ( k  e.  ( R  tX  S )  <->  A. y  e.  k  E. r  e.  R  E. s  e.  S  ( y  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) ) )
1716adantr 452 . . . . . . . . . . 11  |-  ( (
ph  /\  x  e.  X )  ->  (
k  e.  ( R 
tX  S )  <->  A. y  e.  k  E. r  e.  R  E. s  e.  S  ( y  e.  ( r  X.  s
)  /\  ( r  X.  s )  C_  k
) ) )
1817biimpa 471 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  ( R  tX  S
) )  ->  A. y  e.  k  E. r  e.  R  E. s  e.  S  ( y  e.  ( r  X.  s
)  /\  ( r  X.  s )  C_  k
) )
1913, 18syldan 457 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  W )  ->  A. y  e.  k  E. r  e.  R  E. s  e.  S  ( y  e.  ( r  X.  s
)  /\  ( r  X.  s )  C_  k
) )
20 eleq1 2464 . . . . . . . . . . . 12  |-  ( y  =  <. x ,  A >.  ->  ( y  e.  ( r  X.  s
)  <->  <. x ,  A >.  e.  ( r  X.  s ) ) )
2120anbi1d 686 . . . . . . . . . . 11  |-  ( y  =  <. x ,  A >.  ->  ( ( y  e.  ( r  X.  s )  /\  (
r  X.  s ) 
C_  k )  <->  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) ) )
22212rexbidv 2709 . . . . . . . . . 10  |-  ( y  =  <. x ,  A >.  ->  ( E. r  e.  R  E. s  e.  S  ( y  e.  ( r  X.  s
)  /\  ( r  X.  s )  C_  k
)  <->  E. r  e.  R  E. s  e.  S  ( <. x ,  A >.  e.  ( r  X.  s )  /\  (
r  X.  s ) 
C_  k ) ) )
2322rspccv 3009 . . . . . . . . 9  |-  ( A. y  e.  k  E. r  e.  R  E. s  e.  S  (
y  e.  ( r  X.  s )  /\  ( r  X.  s
)  C_  k )  ->  ( <. x ,  A >.  e.  k  ->  E. r  e.  R  E. s  e.  S  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) ) )
2419, 23syl 16 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  W )  ->  ( <. x ,  A >.  e.  k  ->  E. r  e.  R  E. s  e.  S  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) ) )
25 opelxp1 4870 . . . . . . . . . . . . 13  |-  ( <.
x ,  A >.  e.  ( r  X.  s
)  ->  x  e.  r )
2625ad2antrl 709 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  X )  /\  k  e.  W
)  /\  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) )  ->  x  e.  r )
27 opelxp2 4871 . . . . . . . . . . . . . . . 16  |-  ( <.
x ,  A >.  e.  ( r  X.  s
)  ->  A  e.  s )
2827ad2antrl 709 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  x  e.  X )  /\  k  e.  W
)  /\  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) )  ->  A  e.  s )
2928snssd 3903 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  x  e.  X )  /\  k  e.  W
)  /\  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) )  ->  { A }  C_  s )
30 xpss2 4944 . . . . . . . . . . . . . 14  |-  ( { A }  C_  s  ->  ( r  X.  { A } )  C_  (
r  X.  s ) )
3129, 30syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  X )  /\  k  e.  W
)  /\  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) )  ->  (
r  X.  { A } )  C_  (
r  X.  s ) )
32 simprr 734 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  x  e.  X )  /\  k  e.  W
)  /\  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) )  ->  (
r  X.  s ) 
C_  k )
3331, 32sstrd 3318 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  x  e.  X )  /\  k  e.  W
)  /\  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) )  ->  (
r  X.  { A } )  C_  k
)
3426, 33jca 519 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  x  e.  X )  /\  k  e.  W
)  /\  ( <. x ,  A >.  e.  ( r  X.  s )  /\  ( r  X.  s )  C_  k
) )  ->  (
x  e.  r  /\  ( r  X.  { A } )  C_  k
) )
3534ex 424 . . . . . . . . . 10  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  W )  ->  (
( <. x ,  A >.  e.  ( r  X.  s )  /\  (
r  X.  s ) 
C_  k )  -> 
( x  e.  r  /\  ( r  X. 
{ A } ) 
C_  k ) ) )
3635rexlimdvw 2793 . . . . . . . . 9  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  W )  ->  ( E. s  e.  S  ( <. x ,  A >.  e.  ( r  X.  s )  /\  (
r  X.  s ) 
C_  k )  -> 
( x  e.  r  /\  ( r  X. 
{ A } ) 
C_  k ) ) )
3736reximdv 2777 . . . . . . . 8  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  W )  ->  ( E. r  e.  R  E. s  e.  S  ( <. x ,  A >.  e.  ( r  X.  s )  /\  (
r  X.  s ) 
C_  k )  ->  E. r  e.  R  ( x  e.  r  /\  ( r  X.  { A } )  C_  k
) ) )
3824, 37syld 42 . . . . . . 7  |-  ( ( ( ph  /\  x  e.  X )  /\  k  e.  W )  ->  ( <. x ,  A >.  e.  k  ->  E. r  e.  R  ( x  e.  r  /\  (
r  X.  { A } )  C_  k
) ) )
3938reximdva 2778 . . . . . 6  |-  ( (
ph  /\  x  e.  X )  ->  ( E. k  e.  W  <. x ,  A >.  e.  k  ->  E. k  e.  W  E. r  e.  R  ( x  e.  r  /\  (
r  X.  { A } )  C_  k
) ) )
4010, 39mpd 15 . . . . 5  |-  ( (
ph  /\  x  e.  X )  ->  E. k  e.  W  E. r  e.  R  ( x  e.  r  /\  (
r  X.  { A } )  C_  k
) )
41 rexcom 2829 . . . . . 6  |-  ( E. k  e.  W  E. r  e.  R  (
x  e.  r  /\  ( r  X.  { A } )  C_  k
)  <->  E. r  e.  R  E. k  e.  W  ( x  e.  r  /\  ( r  X.  { A } )  C_  k
) )
42 r19.42v 2822 . . . . . . 7  |-  ( E. k  e.  W  ( x  e.  r  /\  ( r  X.  { A } )  C_  k
)  <->  ( x  e.  r  /\  E. k  e.  W  ( r  X.  { A } ) 
C_  k ) )
4342rexbii 2691 . . . . . 6  |-  ( E. r  e.  R  E. k  e.  W  (
x  e.  r  /\  ( r  X.  { A } )  C_  k
)  <->  E. r  e.  R  ( x  e.  r  /\  E. k  e.  W  ( r  X.  { A } )  C_  k
) )
4441, 43bitri 241 . . . . 5  |-  ( E. k  e.  W  E. r  e.  R  (
x  e.  r  /\  ( r  X.  { A } )  C_  k
)  <->  E. r  e.  R  ( x  e.  r  /\  E. k  e.  W  ( r  X.  { A } )  C_  k
) )
4540, 44sylib 189 . . . 4  |-  ( (
ph  /\  x  e.  X )  ->  E. r  e.  R  ( x  e.  r  /\  E. k  e.  W  ( r  X.  { A } ) 
C_  k ) )
4645ralrimiva 2749 . . 3  |-  ( ph  ->  A. x  e.  X  E. r  e.  R  ( x  e.  r  /\  E. k  e.  W  ( r  X.  { A } )  C_  k
) )
47 txcmp.x . . . 4  |-  X  = 
U. R
48 sseq2 3330 . . . 4  |-  ( k  =  ( f `  r )  ->  (
( r  X.  { A } )  C_  k  <->  ( r  X.  { A } )  C_  (
f `  r )
) )
4947, 48cmpcovf 17408 . . 3  |-  ( ( R  e.  Comp  /\  A. x  e.  X  E. r  e.  R  (
x  e.  r  /\  E. k  e.  W  ( r  X.  { A } )  C_  k
) )  ->  E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> W  /\  A. r  e.  t  (
r  X.  { A } )  C_  (
f `  r )
) ) )
501, 46, 49syl2anc 643 . 2  |-  ( ph  ->  E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> W  /\  A. r  e.  t  (
r  X.  { A } )  C_  (
f `  r )
) ) )
51 txcmp.y . . . . . . . 8  |-  Y  = 
U. S
521ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  R  e.  Comp )
53 cmptop 17412 . . . . . . . . . 10  |-  ( S  e.  Comp  ->  S  e. 
Top )
5414, 53syl 16 . . . . . . . . 9  |-  ( ph  ->  S  e.  Top )
5554ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  S  e.  Top )
56 cmptop 17412 . . . . . . . . . . 11  |-  ( R  e.  Comp  ->  R  e. 
Top )
5752, 56syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  R  e.  Top )
58 txtop 17554 . . . . . . . . . 10  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
5957, 55, 58syl2anc 643 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ( R  tX  S )  e.  Top )
60 simprrl 741 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  f :
t --> W )
61 frn 5556 . . . . . . . . . . 11  |-  ( f : t --> W  ->  ran  f  C_  W )
6260, 61syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ran  f  C_  W )
6311ad2antrr 707 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  W  C_  ( R  tX  S ) )
6462, 63sstrd 3318 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ran  f  C_  ( R  tX  S ) )
65 uniopn 16925 . . . . . . . . 9  |-  ( ( ( R  tX  S
)  e.  Top  /\  ran  f  C_  ( R 
tX  S ) )  ->  U. ran  f  e.  ( R  tX  S
) )
6659, 64, 65syl2anc 643 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  U. ran  f  e.  ( R  tX  S
) )
67 simprrr 742 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) )
68 ss2iun 4068 . . . . . . . . . 10  |-  ( A. r  e.  t  (
r  X.  { A } )  C_  (
f `  r )  ->  U_ r  e.  t  ( r  X.  { A } )  C_  U_ r  e.  t  ( f `  r ) )
6967, 68syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  U_ r  e.  t  ( r  X. 
{ A } ) 
C_  U_ r  e.  t  ( f `  r
) )
70 simprl 733 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  X  =  U. t )
71 uniiun 4104 . . . . . . . . . . . 12  |-  U. t  =  U_ r  e.  t  r
7270, 71syl6eq 2452 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  X  =  U_ r  e.  t  r )
7372xpeq1d 4860 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ( X  X.  { A } )  =  ( U_ r  e.  t  r  X.  { A } ) )
74 xpiundir 4892 . . . . . . . . . 10  |-  ( U_ r  e.  t  r  X.  { A } )  =  U_ r  e.  t  ( r  X. 
{ A } )
7573, 74syl6req 2453 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  U_ r  e.  t  ( r  X. 
{ A } )  =  ( X  X.  { A } ) )
76 ffn 5550 . . . . . . . . . . 11  |-  ( f : t --> W  -> 
f  Fn  t )
7760, 76syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  f  Fn  t )
78 fniunfv 5953 . . . . . . . . . 10  |-  ( f  Fn  t  ->  U_ r  e.  t  ( f `  r )  =  U. ran  f )
7977, 78syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  U_ r  e.  t  ( f `  r )  =  U. ran  f )
8069, 75, 793sstr3d 3350 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ( X  X.  { A } ) 
C_  U. ran  f )
813ad2antrr 707 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  A  e.  Y )
8247, 51, 52, 55, 66, 80, 81txtube 17625 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  E. u  e.  S  ( A  e.  u  /\  ( X  X.  u )  C_  U.
ran  f ) )
83 vex 2919 . . . . . . . . . . . . . 14  |-  f  e. 
_V
8483rnex 5092 . . . . . . . . . . . . 13  |-  ran  f  e.  _V
8584elpw 3765 . . . . . . . . . . . 12  |-  ( ran  f  e.  ~P W  <->  ran  f  C_  W )
8662, 85sylibr 204 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ran  f  e. 
~P W )
87 inss2 3522 . . . . . . . . . . . . 13  |-  ( ~P R  i^i  Fin )  C_ 
Fin
88 simplr 732 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  t  e.  ( ~P R  i^i  Fin ) )
8987, 88sseldi 3306 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  t  e.  Fin )
90 dffn4 5618 . . . . . . . . . . . . 13  |-  ( f  Fn  t  <->  f :
t -onto-> ran  f )
9177, 90sylib 189 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  f :
t -onto-> ran  f )
92 fofi 7351 . . . . . . . . . . . 12  |-  ( ( t  e.  Fin  /\  f : t -onto-> ran  f
)  ->  ran  f  e. 
Fin )
9389, 91, 92syl2anc 643 . . . . . . . . . . 11  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ran  f  e. 
Fin )
94 elin 3490 . . . . . . . . . . 11  |-  ( ran  f  e.  ( ~P W  i^i  Fin )  <->  ( ran  f  e.  ~P W  /\  ran  f  e. 
Fin ) )
9586, 93, 94sylanbrc 646 . . . . . . . . . 10  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ran  f  e.  ( ~P W  i^i  Fin ) )
96 unieq 3984 . . . . . . . . . . . . 13  |-  ( v  =  ran  f  ->  U. v  =  U. ran  f )
9796sseq2d 3336 . . . . . . . . . . . 12  |-  ( v  =  ran  f  -> 
( ( X  X.  u )  C_  U. v  <->  ( X  X.  u ) 
C_  U. ran  f ) )
9897rspcev 3012 . . . . . . . . . . 11  |-  ( ( ran  f  e.  ( ~P W  i^i  Fin )  /\  ( X  X.  u )  C_  U. ran  f )  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
)
9998ex 424 . . . . . . . . . 10  |-  ( ran  f  e.  ( ~P W  i^i  Fin )  ->  ( ( X  X.  u )  C_  U. ran  f  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
10095, 99syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ( ( X  X.  u )  C_  U.
ran  f  ->  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
101100anim2d 549 . . . . . . . 8  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ( ( A  e.  u  /\  ( X  X.  u
)  C_  U. ran  f
)  ->  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) ) )
102101reximdv 2777 . . . . . . 7  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  ( E. u  e.  S  ( A  e.  u  /\  ( X  X.  u
)  C_  U. ran  f
)  ->  E. u  e.  S  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) ) )
10382, 102mpd 15 . . . . . 6  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  ( X  =  U. t  /\  ( f : t --> W  /\  A. r  e.  t  ( r  X.  { A } ) 
C_  ( f `  r ) ) ) )  ->  E. u  e.  S  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
104103expr 599 . . . . 5  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  X  =  U. t )  -> 
( ( f : t --> W  /\  A. r  e.  t  (
r  X.  { A } )  C_  (
f `  r )
)  ->  E. u  e.  S  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) ) )
105104exlimdv 1643 . . . 4  |-  ( ( ( ph  /\  t  e.  ( ~P R  i^i  Fin ) )  /\  X  =  U. t )  -> 
( E. f ( f : t --> W  /\  A. r  e.  t  ( r  X. 
{ A } ) 
C_  ( f `  r ) )  ->  E. u  e.  S  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) ) )
106105expimpd 587 . . 3  |-  ( (
ph  /\  t  e.  ( ~P R  i^i  Fin ) )  ->  (
( X  =  U. t  /\  E. f ( f : t --> W  /\  A. r  e.  t  ( r  X. 
{ A } ) 
C_  ( f `  r ) ) )  ->  E. u  e.  S  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) ) )
107106rexlimdva 2790 . 2  |-  ( ph  ->  ( E. t  e.  ( ~P R  i^i  Fin ) ( X  = 
U. t  /\  E. f ( f : t --> W  /\  A. r  e.  t  (
r  X.  { A } )  C_  (
f `  r )
) )  ->  E. u  e.  S  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) ) )
10850, 107mpd 15 1  |-  ( ph  ->  E. u  e.  S  ( A  e.  u  /\  E. v  e.  ( ~P W  i^i  Fin ) ( X  X.  u )  C_  U. v
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359   E.wex 1547    = wceq 1649    e. wcel 1721   A.wral 2666   E.wrex 2667    i^i cin 3279    C_ wss 3280   ~Pcpw 3759   {csn 3774   <.cop 3777   U.cuni 3975   U_ciun 4053    X. cxp 4835   ran crn 4838    Fn wfn 5408   -->wf 5409   -onto->wfo 5411   ` cfv 5413  (class class class)co 6040   Fincfn 7068   Topctop 16913   Compccmp 17403    tX ctx 17545
This theorem is referenced by:  txcmplem2  17627
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-ral 2671  df-rex 2672  df-reu 2673  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-iin 4056  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-en 7069  df-dom 7070  df-fin 7072  df-topgen 13622  df-top 16918  df-bases 16920  df-cmp 17404  df-tx 17547
  Copyright terms: Public domain W3C validator