MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmpb Structured version   Unicode version

Theorem txcmpb 20314
Description: The topological product of two nonempty topologies is compact iff the component topologies are both compact. (Contributed by Mario Carneiro, 14-Sep-2014.)
Hypotheses
Ref Expression
txcmpb.1  |-  X  = 
U. R
txcmpb.2  |-  Y  = 
U. S
Assertion
Ref Expression
txcmpb  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( ( R  tX  S )  e.  Comp  <->  ( R  e.  Comp  /\  S  e.  Comp ) ) )

Proof of Theorem txcmpb
StepHypRef Expression
1 simpr 459 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( R  tX  S )  e. 
Comp )
2 simplrr 760 . . . . . . 7  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  Y  =/=  (/) )
3 fo1stres 6797 . . . . . . 7  |-  ( Y  =/=  (/)  ->  ( 1st  |`  ( X  X.  Y
) ) : ( X  X.  Y )
-onto-> X )
42, 3syl 16 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y
) -onto-> X )
5 txcmpb.1 . . . . . . . . 9  |-  X  = 
U. R
6 txcmpb.2 . . . . . . . . 9  |-  Y  = 
U. S
75, 6txuni 20262 . . . . . . . 8  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( X  X.  Y
)  =  U. ( R  tX  S ) )
87ad2antrr 723 . . . . . . 7  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( X  X.  Y )  = 
U. ( R  tX  S ) )
9 foeq2 5774 . . . . . . 7  |-  ( ( X  X.  Y )  =  U. ( R 
tX  S )  -> 
( ( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> X  <->  ( 1st  |`  ( X  X.  Y
) ) : U. ( R  tX  S )
-onto-> X ) )
108, 9syl 16 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  (
( 1st  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> X  <->  ( 1st  |`  ( X  X.  Y
) ) : U. ( R  tX  S )
-onto-> X ) )
114, 10mpbid 210 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 1st  |`  ( X  X.  Y ) ) : U. ( R  tX  S ) -onto-> X )
125toptopon 19604 . . . . . . 7  |-  ( R  e.  Top  <->  R  e.  (TopOn `  X ) )
136toptopon 19604 . . . . . . 7  |-  ( S  e.  Top  <->  S  e.  (TopOn `  Y ) )
14 tx1cn 20279 . . . . . . 7  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 1st  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  R ) )
1512, 13, 14syl2anb 477 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R 
tX  S )  Cn  R ) )
1615ad2antrr 723 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
) )
175cncmp 20062 . . . . 5  |-  ( ( ( R  tX  S
)  e.  Comp  /\  ( 1st  |`  ( X  X.  Y ) ) : U. ( R  tX  S ) -onto-> X  /\  ( 1st  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  R
) )  ->  R  e.  Comp )
181, 11, 16, 17syl3anc 1226 . . . 4  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  R  e.  Comp )
19 simplrl 759 . . . . . . 7  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  X  =/=  (/) )
20 fo2ndres 6798 . . . . . . 7  |-  ( X  =/=  (/)  ->  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y )
-onto-> Y )
2119, 20syl 16 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y
) -onto-> Y )
22 foeq2 5774 . . . . . . 7  |-  ( ( X  X.  Y )  =  U. ( R 
tX  S )  -> 
( ( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> Y  <->  ( 2nd  |`  ( X  X.  Y
) ) : U. ( R  tX  S )
-onto-> Y ) )
238, 22syl 16 . . . . . 6  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  (
( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y ) -onto-> Y  <->  ( 2nd  |`  ( X  X.  Y
) ) : U. ( R  tX  S )
-onto-> Y ) )
2421, 23mpbid 210 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 2nd  |`  ( X  X.  Y ) ) : U. ( R  tX  S ) -onto-> Y )
25 tx2cn 20280 . . . . . . 7  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )
2612, 13, 25syl2anb 477 . . . . . 6  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R 
tX  S )  Cn  S ) )
2726ad2antrr 723 . . . . 5  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
) )
286cncmp 20062 . . . . 5  |-  ( ( ( R  tX  S
)  e.  Comp  /\  ( 2nd  |`  ( X  X.  Y ) ) : U. ( R  tX  S ) -onto-> Y  /\  ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
) )  ->  S  e.  Comp )
291, 24, 27, 28syl3anc 1226 . . . 4  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  S  e.  Comp )
3018, 29jca 530 . . 3  |-  ( ( ( ( R  e. 
Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  /\  ( R  tX  S )  e. 
Comp )  ->  ( R  e.  Comp  /\  S  e.  Comp ) )
3130ex 432 . 2  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( ( R  tX  S )  e.  Comp  -> 
( R  e.  Comp  /\  S  e.  Comp )
) )
32 txcmp 20313 . 2  |-  ( ( R  e.  Comp  /\  S  e.  Comp )  ->  ( R  tX  S )  e. 
Comp )
3331, 32impbid1 203 1  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( X  =/=  (/)  /\  Y  =/=  (/) ) )  -> 
( ( R  tX  S )  e.  Comp  <->  ( R  e.  Comp  /\  S  e.  Comp ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1398    e. wcel 1823    =/= wne 2649   (/)c0 3783   U.cuni 4235    X. cxp 4986    |` cres 4990   -onto->wfo 5568   ` cfv 5570  (class class class)co 6270   1stc1st 6771   2ndc2nd 6772   Topctop 19564  TopOnctopon 19565    Cn ccn 19895   Compccmp 20056    tX ctx 20230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-fin 7513  df-topgen 14936  df-top 19569  df-bases 19571  df-topon 19572  df-cn 19898  df-cmp 20057  df-tx 20232
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator