MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcmp Structured version   Unicode version

Theorem txcmp 19219
Description: The topological product of two compact spaces is compact. (Contributed by Mario Carneiro, 14-Sep-2014.) (Proof shortened 21-Mar-2015.)
Assertion
Ref Expression
txcmp  |-  ( ( R  e.  Comp  /\  S  e.  Comp )  ->  ( R  tX  S )  e. 
Comp )

Proof of Theorem txcmp
Dummy variables  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cmptop 19001 . . 3  |-  ( R  e.  Comp  ->  R  e. 
Top )
2 cmptop 19001 . . 3  |-  ( S  e.  Comp  ->  S  e. 
Top )
3 txtop 19145 . . 3  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
41, 2, 3syl2an 477 . 2  |-  ( ( R  e.  Comp  /\  S  e.  Comp )  ->  ( R  tX  S )  e. 
Top )
5 eqid 2443 . . . . . 6  |-  U. R  =  U. R
6 eqid 2443 . . . . . 6  |-  U. S  =  U. S
7 simpll 753 . . . . . 6  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  R  e.  Comp )
8 simplr 754 . . . . . 6  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  S  e.  Comp )
9 elpwi 3872 . . . . . . 7  |-  ( w  e.  ~P ( R 
tX  S )  ->  w  C_  ( R  tX  S ) )
109ad2antrl 727 . . . . . 6  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  w  C_  ( R  tX  S ) )
115, 6txuni 19168 . . . . . . . . 9  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( U. R  X.  U. S )  =  U. ( R  tX  S ) )
121, 2, 11syl2an 477 . . . . . . . 8  |-  ( ( R  e.  Comp  /\  S  e.  Comp )  ->  ( U. R  X.  U. S
)  =  U. ( R  tX  S ) )
1312adantr 465 . . . . . . 7  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  ( U. R  X.  U. S )  = 
U. ( R  tX  S ) )
14 simprr 756 . . . . . . 7  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  U. ( R  tX  S )  =  U. w )
1513, 14eqtrd 2475 . . . . . 6  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  ( U. R  X.  U. S )  = 
U. w )
165, 6, 7, 8, 10, 15txcmplem2 19218 . . . . 5  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  E. v  e.  ( ~P w  i^i  Fin ) ( U. R  X.  U. S )  = 
U. v )
1713eqeq1d 2451 . . . . . 6  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  ( ( U. R  X.  U. S )  =  U. v  <->  U. ( R  tX  S )  = 
U. v ) )
1817rexbidv 2739 . . . . 5  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  ( E. v  e.  ( ~P w  i^i 
Fin ) ( U. R  X.  U. S )  =  U. v  <->  E. v  e.  ( ~P w  i^i 
Fin ) U. ( R  tX  S )  = 
U. v ) )
1916, 18mpbid 210 . . . 4  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  ( w  e.  ~P ( R  tX  S )  /\  U. ( R 
tX  S )  = 
U. w ) )  ->  E. v  e.  ( ~P w  i^i  Fin ) U. ( R  tX  S )  =  U. v )
2019expr 615 . . 3  |-  ( ( ( R  e.  Comp  /\  S  e.  Comp )  /\  w  e.  ~P ( R  tX  S ) )  ->  ( U. ( R  tX  S )  =  U. w  ->  E. v  e.  ( ~P w  i^i  Fin ) U. ( R  tX  S
)  =  U. v
) )
2120ralrimiva 2802 . 2  |-  ( ( R  e.  Comp  /\  S  e.  Comp )  ->  A. w  e.  ~P  ( R  tX  S ) ( U. ( R  tX  S )  =  U. w  ->  E. v  e.  ( ~P w  i^i  Fin ) U. ( R  tX  S
)  =  U. v
) )
22 eqid 2443 . . 3  |-  U. ( R  tX  S )  = 
U. ( R  tX  S )
2322iscmp 18994 . 2  |-  ( ( R  tX  S )  e.  Comp  <->  ( ( R 
tX  S )  e. 
Top  /\  A. w  e.  ~P  ( R  tX  S ) ( U. ( R  tX  S )  =  U. w  ->  E. v  e.  ( ~P w  i^i  Fin ) U. ( R  tX  S
)  =  U. v
) ) )
244, 21, 23sylanbrc 664 1  |-  ( ( R  e.  Comp  /\  S  e.  Comp )  ->  ( R  tX  S )  e. 
Comp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   A.wral 2718   E.wrex 2719    i^i cin 3330    C_ wss 3331   ~Pcpw 3863   U.cuni 4094    X. cxp 4841  (class class class)co 6094   Fincfn 7313   Topctop 18501   Compccmp 18992    tX ctx 19136
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4406  ax-sep 4416  ax-nul 4424  ax-pow 4473  ax-pr 4534  ax-un 6375
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2571  df-ne 2611  df-ral 2723  df-rex 2724  df-reu 2725  df-rab 2727  df-v 2977  df-sbc 3190  df-csb 3292  df-dif 3334  df-un 3336  df-in 3338  df-ss 3345  df-pss 3347  df-nul 3641  df-if 3795  df-pw 3865  df-sn 3881  df-pr 3883  df-tp 3885  df-op 3887  df-uni 4095  df-int 4132  df-iun 4176  df-iin 4177  df-br 4296  df-opab 4354  df-mpt 4355  df-tr 4389  df-eprel 4635  df-id 4639  df-po 4644  df-so 4645  df-fr 4682  df-we 4684  df-ord 4725  df-on 4726  df-lim 4727  df-suc 4728  df-xp 4849  df-rel 4850  df-cnv 4851  df-co 4852  df-dm 4853  df-rn 4854  df-res 4855  df-ima 4856  df-iota 5384  df-fun 5423  df-fn 5424  df-f 5425  df-f1 5426  df-fo 5427  df-f1o 5428  df-fv 5429  df-ov 6097  df-oprab 6098  df-mpt2 6099  df-om 6480  df-1st 6580  df-2nd 6581  df-recs 6835  df-rdg 6869  df-1o 6923  df-oadd 6927  df-er 7104  df-en 7314  df-dom 7315  df-fin 7317  df-topgen 14385  df-top 18506  df-bases 18508  df-topon 18509  df-cmp 18993  df-tx 19138
This theorem is referenced by:  txcmpb  19220  txkgen  19228  ptcmpfi  19389  xkohmeo  19391  cnheiborlem  20529
  Copyright terms: Public domain W3C validator