MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  txcld Structured version   Unicode version

Theorem txcld 20189
Description: The product of two closed sets is closed in the product topology. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
txcld  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( A  X.  B )  e.  ( Clsd `  ( R  tX  S ) ) )

Proof of Theorem txcld
StepHypRef Expression
1 eqid 2382 . . . . 5  |-  U. R  =  U. R
21cldss 19615 . . . 4  |-  ( A  e.  ( Clsd `  R
)  ->  A  C_  U. R
)
3 eqid 2382 . . . . 5  |-  U. S  =  U. S
43cldss 19615 . . . 4  |-  ( B  e.  ( Clsd `  S
)  ->  B  C_  U. S
)
5 xpss12 5021 . . . 4  |-  ( ( A  C_  U. R  /\  B  C_  U. S )  ->  ( A  X.  B )  C_  ( U. R  X.  U. S
) )
62, 4, 5syl2an 475 . . 3  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( A  X.  B )  C_  ( U. R  X.  U. S ) )
7 cldrcl 19612 . . . 4  |-  ( A  e.  ( Clsd `  R
)  ->  R  e.  Top )
8 cldrcl 19612 . . . 4  |-  ( B  e.  ( Clsd `  S
)  ->  S  e.  Top )
91, 3txuni 20178 . . . 4  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( U. R  X.  U. S )  =  U. ( R  tX  S ) )
107, 8, 9syl2an 475 . . 3  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( U. R  X.  U. S
)  =  U. ( R  tX  S ) )
116, 10sseqtrd 3453 . 2  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( A  X.  B )  C_  U. ( R  tX  S
) )
12 difxp 5341 . . . 4  |-  ( ( U. R  X.  U. S )  \  ( A  X.  B ) )  =  ( ( ( U. R  \  A
)  X.  U. S
)  u.  ( U. R  X.  ( U. S  \  B ) ) )
1310difeq1d 3535 . . . 4  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  (
( U. R  X.  U. S )  \  ( A  X.  B ) )  =  ( U. ( R  tX  S )  \ 
( A  X.  B
) ) )
1412, 13syl5eqr 2437 . . 3  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  (
( ( U. R  \  A )  X.  U. S )  u.  ( U. R  X.  ( U. S  \  B ) ) )  =  ( U. ( R  tX  S )  \  ( A  X.  B ) ) )
15 txtop 20155 . . . . 5  |-  ( ( R  e.  Top  /\  S  e.  Top )  ->  ( R  tX  S
)  e.  Top )
167, 8, 15syl2an 475 . . . 4  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( R  tX  S )  e. 
Top )
177adantr 463 . . . . 5  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  R  e.  Top )
188adantl 464 . . . . 5  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  S  e.  Top )
191cldopn 19617 . . . . . 6  |-  ( A  e.  ( Clsd `  R
)  ->  ( U. R  \  A )  e.  R )
2019adantr 463 . . . . 5  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( U. R  \  A )  e.  R )
213topopn 19500 . . . . . 6  |-  ( S  e.  Top  ->  U. S  e.  S )
2218, 21syl 16 . . . . 5  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  U. S  e.  S )
23 txopn 20188 . . . . 5  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( ( U. R  \  A )  e.  R  /\  U. S  e.  S
) )  ->  (
( U. R  \  A )  X.  U. S )  e.  ( R  tX  S ) )
2417, 18, 20, 22, 23syl22anc 1227 . . . 4  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  (
( U. R  \  A )  X.  U. S )  e.  ( R  tX  S ) )
251topopn 19500 . . . . . 6  |-  ( R  e.  Top  ->  U. R  e.  R )
2617, 25syl 16 . . . . 5  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  U. R  e.  R )
273cldopn 19617 . . . . . 6  |-  ( B  e.  ( Clsd `  S
)  ->  ( U. S  \  B )  e.  S )
2827adantl 464 . . . . 5  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( U. S  \  B )  e.  S )
29 txopn 20188 . . . . 5  |-  ( ( ( R  e.  Top  /\  S  e.  Top )  /\  ( U. R  e.  R  /\  ( U. S  \  B )  e.  S ) )  -> 
( U. R  X.  ( U. S  \  B
) )  e.  ( R  tX  S ) )
3017, 18, 26, 28, 29syl22anc 1227 . . . 4  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( U. R  X.  ( U. S  \  B ) )  e.  ( R 
tX  S ) )
31 unopn 19497 . . . 4  |-  ( ( ( R  tX  S
)  e.  Top  /\  ( ( U. R  \  A )  X.  U. S )  e.  ( R  tX  S )  /\  ( U. R  X.  ( U. S  \  B ) )  e.  ( R  tX  S
) )  ->  (
( ( U. R  \  A )  X.  U. S )  u.  ( U. R  X.  ( U. S  \  B ) ) )  e.  ( R  tX  S ) )
3216, 24, 30, 31syl3anc 1226 . . 3  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  (
( ( U. R  \  A )  X.  U. S )  u.  ( U. R  X.  ( U. S  \  B ) ) )  e.  ( R  tX  S ) )
3314, 32eqeltrrd 2471 . 2  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( U. ( R  tX  S
)  \  ( A  X.  B ) )  e.  ( R  tX  S
) )
34 eqid 2382 . . . 4  |-  U. ( R  tX  S )  = 
U. ( R  tX  S )
3534iscld 19613 . . 3  |-  ( ( R  tX  S )  e.  Top  ->  (
( A  X.  B
)  e.  ( Clsd `  ( R  tX  S
) )  <->  ( ( A  X.  B )  C_  U. ( R  tX  S
)  /\  ( U. ( R  tX  S ) 
\  ( A  X.  B ) )  e.  ( R  tX  S
) ) ) )
3616, 35syl 16 . 2  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  (
( A  X.  B
)  e.  ( Clsd `  ( R  tX  S
) )  <->  ( ( A  X.  B )  C_  U. ( R  tX  S
)  /\  ( U. ( R  tX  S ) 
\  ( A  X.  B ) )  e.  ( R  tX  S
) ) ) )
3711, 33, 36mpbir2and 920 1  |-  ( ( A  e.  ( Clsd `  R )  /\  B  e.  ( Clsd `  S
) )  ->  ( A  X.  B )  e.  ( Clsd `  ( R  tX  S ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1399    e. wcel 1826    \ cdif 3386    u. cun 3387    C_ wss 3389   U.cuni 4163    X. cxp 4911   ` cfv 5496  (class class class)co 6196   Topctop 19479   Clsdccld 19602    tX ctx 20146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-nul 3712  df-if 3858  df-pw 3929  df-sn 3945  df-pr 3947  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-id 4709  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-fv 5504  df-ov 6199  df-oprab 6200  df-mpt2 6201  df-1st 6699  df-2nd 6700  df-topgen 14851  df-top 19484  df-bases 19486  df-topon 19487  df-cld 19605  df-tx 20148
This theorem is referenced by:  txcls  20190  cnmpt2pc  21513  sxbrsigalem3  28399
  Copyright terms: Public domain W3C validator