MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2cn Structured version   Unicode version

Theorem tx2cn 20623
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx2cn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )

Proof of Theorem tx2cn
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 6830 . . 3  |-  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y
21a1i 11 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y )
3 toponss 19942 . . . . . . . . . 10  |-  ( ( S  e.  (TopOn `  Y )  /\  w  e.  S )  ->  w  C_  Y )
43adantll 718 . . . . . . . . 9  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  w  C_  Y )
5 xpss2 4963 . . . . . . . . 9  |-  ( w 
C_  Y  ->  ( X  X.  w )  C_  ( X  X.  Y
) )
64, 5syl 17 . . . . . . . 8  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( X  X.  w )  C_  ( X  X.  Y
) )
76sseld 3463 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( X  X.  w )  -> 
z  e.  ( X  X.  Y ) ) )
87pm4.71rd 639 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( X  X.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) ) )
9 ffn 5746 . . . . . . . 8  |-  ( ( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y
) --> Y  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
10 elpreima 6017 . . . . . . . 8  |-  ( ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y
) ) " w
)  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `  z )  e.  w
) ) )
111, 9, 10mp2b 10 . . . . . . 7  |-  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `  z )  e.  w
) )
12 fvres 5895 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  (
( 2nd  |`  ( X  X.  Y ) ) `
 z )  =  ( 2nd `  z
) )
1312eleq1d 2491 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  ( 2nd `  z
)  e.  w ) )
14 1st2nd2 6844 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
15 xp1st 6837 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
16 elxp6 6839 . . . . . . . . . . . 12  |-  ( z  e.  ( X  X.  w )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  w ) ) )
17 anass 653 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  /\  ( 2nd `  z )  e.  w
)  <->  ( z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  w ) ) )
1816, 17bitr4i 255 . . . . . . . . . . 11  |-  ( z  e.  ( X  X.  w )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  /\  ( 2nd `  z )  e.  w
) )
1918baib 911 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  ->  ( z  e.  ( X  X.  w
)  <->  ( 2nd `  z
)  e.  w ) )
2014, 15, 19syl2anc 665 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
z  e.  ( X  X.  w )  <->  ( 2nd `  z )  e.  w
) )
2113, 20bitr4d 259 . . . . . . . 8  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  z  e.  ( X  X.  w ) ) )
2221pm5.32i 641 . . . . . . 7  |-  ( ( z  e.  ( X  X.  Y )  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) )
2311, 22bitri 252 . . . . . 6  |-  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) )
248, 23syl6rbbr 267 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  <->  z  e.  ( X  X.  w
) ) )
2524eqrdv 2419 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  =  ( X  X.  w
) )
26 toponmax 19941 . . . . . . 7  |-  ( R  e.  (TopOn `  X
)  ->  X  e.  R )
2726adantr 466 . . . . . 6  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  X  e.  R )
28 txopn 20615 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( X  e.  R  /\  w  e.  S ) )  -> 
( X  X.  w
)  e.  ( R 
tX  S ) )
2928expr 618 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  X  e.  R )  ->  (
w  e.  S  -> 
( X  X.  w
)  e.  ( R 
tX  S ) ) )
3027, 29mpdan 672 . . . . 5  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( w  e.  S  ->  ( X  X.  w )  e.  ( R  tX  S
) ) )
3130imp 430 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( X  X.  w )  e.  ( R  tX  S
) )
3225, 31eqeltrd 2507 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  e.  ( R  tX  S
) )
3332ralrimiva 2836 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) )
34 txtopon 20604 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
35 iscn 20249 . . 3  |-  ( ( ( R  tX  S
)  e.  (TopOn `  ( X  X.  Y
) )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
)  <->  ( ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y  /\  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
3634, 35sylancom 671 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
)  <->  ( ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y  /\  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
372, 33, 36mpbir2and 930 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1872   A.wral 2771    C_ wss 3436   <.cop 4004    X. cxp 4851   `'ccnv 4852    |` cres 4855   "cima 4856    Fn wfn 5596   -->wf 5597   ` cfv 5601  (class class class)co 6305   1stc1st 6805   2ndc2nd 6806  TopOnctopon 19916    Cn ccn 20238    tX ctx 20573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2057  ax-ext 2401  ax-sep 4546  ax-nul 4555  ax-pow 4602  ax-pr 4660  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2273  df-mo 2274  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2568  df-ne 2616  df-ral 2776  df-rex 2777  df-rab 2780  df-v 3082  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-nul 3762  df-if 3912  df-pw 3983  df-sn 3999  df-pr 4001  df-op 4005  df-uni 4220  df-iun 4301  df-br 4424  df-opab 4483  df-mpt 4484  df-id 4768  df-xp 4859  df-rel 4860  df-cnv 4861  df-co 4862  df-dm 4863  df-rn 4864  df-res 4865  df-ima 4866  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-fv 5609  df-ov 6308  df-oprab 6309  df-mpt2 6310  df-1st 6807  df-2nd 6808  df-map 7485  df-topgen 15341  df-top 19919  df-bases 19920  df-topon 19921  df-cn 20241  df-tx 20575
This theorem is referenced by:  txcn  20639  txcmpb  20657  txkgen  20665  cnmpt2nd  20682  sxbrsiga  29120  txsconlem  29971  txscon  29972  hausgraph  36059
  Copyright terms: Public domain W3C validator