MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tx2cn Structured version   Unicode version

Theorem tx2cn 19142
Description: Continuity of the second projection map of a topological product. (Contributed by Jeff Madsen, 2-Sep-2009.) (Proof shortened by Mario Carneiro, 22-Aug-2015.)
Assertion
Ref Expression
tx2cn  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )

Proof of Theorem tx2cn
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f2ndres 6598 . . 3  |-  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y
21a1i 11 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y )
3 toponss 18493 . . . . . . . . . 10  |-  ( ( S  e.  (TopOn `  Y )  /\  w  e.  S )  ->  w  C_  Y )
43adantll 708 . . . . . . . . 9  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  w  C_  Y )
5 xpss2 4945 . . . . . . . . 9  |-  ( w 
C_  Y  ->  ( X  X.  w )  C_  ( X  X.  Y
) )
64, 5syl 16 . . . . . . . 8  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( X  X.  w )  C_  ( X  X.  Y
) )
76sseld 3352 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( X  X.  w )  -> 
z  e.  ( X  X.  Y ) ) )
87pm4.71rd 630 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( X  X.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) ) )
9 ffn 5556 . . . . . . . 8  |-  ( ( 2nd  |`  ( X  X.  Y ) ) : ( X  X.  Y
) --> Y  ->  ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
) )
10 elpreima 5820 . . . . . . . 8  |-  ( ( 2nd  |`  ( X  X.  Y ) )  Fn  ( X  X.  Y
)  ->  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y
) ) " w
)  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `  z )  e.  w
) ) )
111, 9, 10mp2b 10 . . . . . . 7  |-  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `  z )  e.  w
) )
12 fvres 5701 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  (
( 2nd  |`  ( X  X.  Y ) ) `
 z )  =  ( 2nd `  z
) )
1312eleq1d 2507 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  ( 2nd `  z
)  e.  w ) )
14 1st2nd2 6612 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >. )
15 xp1st 6605 . . . . . . . . . 10  |-  ( z  e.  ( X  X.  Y )  ->  ( 1st `  z )  e.  X )
16 elxp6 6607 . . . . . . . . . . . 12  |-  ( z  e.  ( X  X.  w )  <->  ( z  =  <. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  w ) ) )
17 anass 644 . . . . . . . . . . . 12  |-  ( ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  /\  ( 2nd `  z )  e.  w
)  <->  ( z  = 
<. ( 1st `  z
) ,  ( 2nd `  z ) >.  /\  (
( 1st `  z
)  e.  X  /\  ( 2nd `  z )  e.  w ) ) )
1816, 17bitr4i 252 . . . . . . . . . . 11  |-  ( z  e.  ( X  X.  w )  <->  ( (
z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  /\  ( 2nd `  z )  e.  w
) )
1918baib 891 . . . . . . . . . 10  |-  ( ( z  =  <. ( 1st `  z ) ,  ( 2nd `  z
) >.  /\  ( 1st `  z )  e.  X
)  ->  ( z  e.  ( X  X.  w
)  <->  ( 2nd `  z
)  e.  w ) )
2014, 15, 19syl2anc 656 . . . . . . . . 9  |-  ( z  e.  ( X  X.  Y )  ->  (
z  e.  ( X  X.  w )  <->  ( 2nd `  z )  e.  w
) )
2113, 20bitr4d 256 . . . . . . . 8  |-  ( z  e.  ( X  X.  Y )  ->  (
( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w  <->  z  e.  ( X  X.  w ) ) )
2221pm5.32i 632 . . . . . . 7  |-  ( ( z  e.  ( X  X.  Y )  /\  ( ( 2nd  |`  ( X  X.  Y ) ) `
 z )  e.  w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) )
2311, 22bitri 249 . . . . . 6  |-  ( z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  <->  ( z  e.  ( X  X.  Y
)  /\  z  e.  ( X  X.  w
) ) )
248, 23syl6rbbr 264 . . . . 5  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  (
z  e.  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  <->  z  e.  ( X  X.  w
) ) )
2524eqrdv 2439 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  =  ( X  X.  w
) )
26 toponmax 18492 . . . . . . 7  |-  ( R  e.  (TopOn `  X
)  ->  X  e.  R )
2726adantr 462 . . . . . 6  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  X  e.  R )
28 txopn 19134 . . . . . . 7  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  ( X  e.  R  /\  w  e.  S ) )  -> 
( X  X.  w
)  e.  ( R 
tX  S ) )
2928expr 612 . . . . . 6  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  X  e.  R )  ->  (
w  e.  S  -> 
( X  X.  w
)  e.  ( R 
tX  S ) ) )
3027, 29mpdan 663 . . . . 5  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( w  e.  S  ->  ( X  X.  w )  e.  ( R  tX  S
) ) )
3130imp 429 . . . 4  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( X  X.  w )  e.  ( R  tX  S
) )
3225, 31eqeltrd 2515 . . 3  |-  ( ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  /\  w  e.  S )  ->  ( `' ( 2nd  |`  ( X  X.  Y ) )
" w )  e.  ( R  tX  S
) )
3332ralrimiva 2797 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) )
34 txtopon 19123 . . 3  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( R  tX  S )  e.  (TopOn `  ( X  X.  Y
) ) )
35 iscn 18798 . . 3  |-  ( ( ( R  tX  S
)  e.  (TopOn `  ( X  X.  Y
) )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
)  <->  ( ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y  /\  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
3634, 35sylancom 662 . 2  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( ( 2nd  |`  ( X  X.  Y ) )  e.  ( ( R  tX  S )  Cn  S
)  <->  ( ( 2nd  |`  ( X  X.  Y
) ) : ( X  X.  Y ) --> Y  /\  A. w  e.  S  ( `' ( 2nd  |`  ( X  X.  Y ) ) "
w )  e.  ( R  tX  S ) ) ) )
372, 33, 36mpbir2and 908 1  |-  ( ( R  e.  (TopOn `  X )  /\  S  e.  (TopOn `  Y )
)  ->  ( 2nd  |`  ( X  X.  Y
) )  e.  ( ( R  tX  S
)  Cn  S ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1364    e. wcel 1761   A.wral 2713    C_ wss 3325   <.cop 3880    X. cxp 4834   `'ccnv 4835    |` cres 4838   "cima 4839    Fn wfn 5410   -->wf 5411   ` cfv 5415  (class class class)co 6090   1stc1st 6574   2ndc2nd 6575  TopOnctopon 18458    Cn ccn 18787    tX ctx 19092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-ral 2718  df-rex 2719  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-id 4632  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-fv 5423  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-1st 6576  df-2nd 6577  df-map 7212  df-topgen 14378  df-top 18462  df-bases 18464  df-topon 18465  df-cn 18790  df-tx 19094
This theorem is referenced by:  txcn  19158  txcmpb  19176  txkgen  19184  cnmpt2nd  19201  sxbrsiga  26641  txsconlem  27059  txscon  27060  hausgraph  29505
  Copyright terms: Public domain W3C validator