MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tuslem Structured version   Unicode version

Theorem tuslem 20640
Description: Lemma for tusbas 20641, tusunif 20642, and tustopn 20644. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Hypothesis
Ref Expression
tuslem.k  |-  K  =  (toUnifSp `  U )
Assertion
Ref Expression
tuslem  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  =  ( Base `  K
)  /\  U  =  ( UnifSet `  K )  /\  (unifTop `  U )  =  ( TopOpen `  K
) ) )

Proof of Theorem tuslem
StepHypRef Expression
1 baseid 14552 . . . 4  |-  Base  = Slot  ( Base `  ndx )
2 1re 9595 . . . . . 6  |-  1  e.  RR
3 1lt9 10740 . . . . . 6  |-  1  <  9
42, 3ltneii 9697 . . . . 5  |-  1  =/=  9
5 basendx 14556 . . . . . 6  |-  ( Base `  ndx )  =  1
6 tsetndx 14658 . . . . . 6  |-  (TopSet `  ndx )  =  9
75, 6neeq12i 2730 . . . . 5  |-  ( (
Base `  ndx )  =/=  (TopSet `  ndx )  <->  1  =/=  9 )
84, 7mpbir 209 . . . 4  |-  ( Base `  ndx )  =/=  (TopSet ` 
ndx )
91, 8setsnid 14548 . . 3  |-  ( Base `  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } )  =  ( Base `  ( { <. ( Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U
) >. ) )
10 ustbas2 20598 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  dom  U. U )
11 uniexg 6579 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  U. U  e. 
_V )
12 dmexg 6713 . . . . 5  |-  ( U. U  e.  _V  ->  dom  U. U  e.  _V )
13 eqid 2441 . . . . . 6  |-  { <. (
Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. }  =  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. }
14 df-unif 14594 . . . . . 6  |-  UnifSet  = Slot ; 1 3
15 1nn 10550 . . . . . . 7  |-  1  e.  NN
16 3nn0 10816 . . . . . . 7  |-  3  e.  NN0
17 1nn0 10814 . . . . . . 7  |-  1  e.  NN0
18 1lt10 10749 . . . . . . 7  |-  1  <  10
1915, 16, 17, 18declti 11006 . . . . . 6  |-  1  < ; 1
3
20 3nn 10697 . . . . . . 7  |-  3  e.  NN
2117, 20decnncl 10994 . . . . . 6  |- ; 1 3  e.  NN
2213, 14, 19, 212strbas 14608 . . . . 5  |-  ( dom  U. U  e.  _V  ->  dom  U. U  =  ( Base `  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } ) )
2311, 12, 223syl 20 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  dom  U. U  =  ( Base `  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } ) )
2410, 23eqtrd 2482 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  ( Base `  { <. ( Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } ) )
25 tuslem.k . . . . 5  |-  K  =  (toUnifSp `  U )
26 tusval 20639 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  (toUnifSp `  U
)  =  ( {
<. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )
2725, 26syl5eq 2494 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  K  =  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )
2827fveq2d 5857 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( Base `  K )  =  (
Base `  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) ) )
299, 24, 283eqtr4a 2508 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  ( Base `  K )
)
30 unifid 14677 . . . 4  |-  UnifSet  = Slot  ( UnifSet
`  ndx )
31 9re 10625 . . . . . 6  |-  9  e.  RR
32 9nn0 10822 . . . . . . 7  |-  9  e.  NN0
33 9lt10 10741 . . . . . . 7  |-  9  <  10
3415, 16, 32, 33declti 11006 . . . . . 6  |-  9  < ; 1
3
3531, 34gtneii 9696 . . . . 5  |- ; 1 3  =/=  9
36 unifndx 14676 . . . . . 6  |-  ( UnifSet ` 
ndx )  = ; 1 3
3736, 6neeq12i 2730 . . . . 5  |-  ( (
UnifSet `  ndx )  =/=  (TopSet `  ndx )  <-> ; 1 3  =/=  9
)
3835, 37mpbir 209 . . . 4  |-  ( UnifSet ` 
ndx )  =/=  (TopSet ` 
ndx )
3930, 38setsnid 14548 . . 3  |-  ( UnifSet `  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } )  =  ( UnifSet `  ( { <. ( Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U
) >. ) )
4013, 14, 19, 212strop 14609 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  U  =  ( UnifSet `  { <. ( Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } ) )
4127fveq2d 5857 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( UnifSet `  K )  =  (
UnifSet `  ( { <. (
Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U
) >. ) ) )
4239, 40, 413eqtr4a 2508 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  U  =  ( UnifSet `  K )
)
4327fveq2d 5857 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  (TopSet `  K
)  =  (TopSet `  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) ) )
44 prex 4676 . . . . 5  |-  { <. (
Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. }  e.  _V
45 fvex 5863 . . . . 5  |-  (unifTop `  U
)  e.  _V
46 tsetid 14659 . . . . . 6  |- TopSet  = Slot  (TopSet ` 
ndx )
4746setsid 14547 . . . . 5  |-  ( ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. }  e.  _V  /\  (unifTop `  U )  e.  _V )  ->  (unifTop `  U )  =  (TopSet `  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) ) )
4844, 45, 47mp2an 672 . . . 4  |-  (unifTop `  U
)  =  (TopSet `  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )
4943, 48syl6reqr 2501 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  (TopSet `  K ) )
50 utopbas 20608 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  U. (unifTop `  U )
)
5149unieqd 4241 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  U. (unifTop `  U )  =  U. (TopSet `  K ) )
5250, 29, 513eqtr3rd 2491 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  U. (TopSet `  K )  =  (
Base `  K )
)
5352oveq2d 6294 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( (TopSet `  K )t  U. (TopSet `  K
) )  =  ( (TopSet `  K )t  ( Base `  K ) ) )
54 fvex 5863 . . . . 5  |-  (TopSet `  K )  e.  _V
55 eqid 2441 . . . . . 6  |-  U. (TopSet `  K )  =  U. (TopSet `  K )
5655restid 14705 . . . . 5  |-  ( (TopSet `  K )  e.  _V  ->  ( (TopSet `  K
)t  U. (TopSet `  K )
)  =  (TopSet `  K ) )
5754, 56ax-mp 5 . . . 4  |-  ( (TopSet `  K )t  U. (TopSet `  K
) )  =  (TopSet `  K )
58 eqid 2441 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
59 eqid 2441 . . . . 5  |-  (TopSet `  K )  =  (TopSet `  K )
6058, 59topnval 14706 . . . 4  |-  ( (TopSet `  K )t  ( Base `  K
) )  =  (
TopOpen `  K )
6153, 57, 603eqtr3g 2505 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  (TopSet `  K
)  =  ( TopOpen `  K ) )
6249, 61eqtrd 2482 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  ( TopOpen `  K ) )
6329, 42, 623jca 1175 1  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  =  ( Base `  K
)  /\  U  =  ( UnifSet `  K )  /\  (unifTop `  U )  =  ( TopOpen `  K
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 972    = wceq 1381    e. wcel 1802    =/= wne 2636   _Vcvv 3093   {cpr 4013   <.cop 4017   U.cuni 4231   dom cdm 4986   ` cfv 5575  (class class class)co 6278   1c1 9493   3c3 10589   9c9 10595  ;cdc 10981   ndxcnx 14503   sSet csts 14504   Basecbs 14506  TopSetcts 14577   UnifSetcunif 14581   ↾t crest 14692   TopOpenctopn 14693  UnifOncust 20572  unifTopcutop 20603  toUnifSpctus 20628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4545  ax-sep 4555  ax-nul 4563  ax-pow 4612  ax-pr 4673  ax-un 6574  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-nel 2639  df-ral 2796  df-rex 2797  df-reu 2798  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3419  df-dif 3462  df-un 3464  df-in 3466  df-ss 3473  df-pss 3475  df-nul 3769  df-if 3924  df-pw 3996  df-sn 4012  df-pr 4014  df-tp 4016  df-op 4018  df-uni 4232  df-int 4269  df-iun 4314  df-br 4435  df-opab 4493  df-mpt 4494  df-tr 4528  df-eprel 4778  df-id 4782  df-po 4787  df-so 4788  df-fr 4825  df-we 4827  df-ord 4868  df-on 4869  df-lim 4870  df-suc 4871  df-xp 4992  df-rel 4993  df-cnv 4994  df-co 4995  df-dm 4996  df-rn 4997  df-res 4998  df-ima 4999  df-iota 5538  df-fun 5577  df-fn 5578  df-f 5579  df-f1 5580  df-fo 5581  df-f1o 5582  df-fv 5583  df-riota 6239  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6683  df-1st 6782  df-2nd 6783  df-recs 7041  df-rdg 7075  df-1o 7129  df-oadd 7133  df-er 7310  df-en 7516  df-dom 7517  df-sdom 7518  df-fin 7519  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9809  df-neg 9810  df-nn 10540  df-2 10597  df-3 10598  df-4 10599  df-5 10600  df-6 10601  df-7 10602  df-8 10603  df-9 10604  df-10 10605  df-n0 10799  df-z 10868  df-dec 10982  df-uz 11088  df-fz 11679  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-tset 14590  df-unif 14594  df-rest 14694  df-topn 14695  df-ust 20573  df-utop 20604  df-tus 20631
This theorem is referenced by:  tusbas  20641  tusunif  20642  tustopn  20644  tususp  20645
  Copyright terms: Public domain W3C validator