MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tuslem Structured version   Unicode version

Theorem tuslem 20638
Description: Lemma for tusbas 20639, tusunif 20640, and tustopn 20642. (Contributed by Thierry Arnoux, 5-Dec-2017.)
Hypothesis
Ref Expression
tuslem.k  |-  K  =  (toUnifSp `  U )
Assertion
Ref Expression
tuslem  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  =  ( Base `  K
)  /\  U  =  ( UnifSet `  K )  /\  (unifTop `  U )  =  ( TopOpen `  K
) ) )

Proof of Theorem tuslem
StepHypRef Expression
1 baseid 14553 . . . 4  |-  Base  = Slot  ( Base `  ndx )
2 1re 9607 . . . . . 6  |-  1  e.  RR
3 1lt9 10749 . . . . . 6  |-  1  <  9
42, 3ltneii 9709 . . . . 5  |-  1  =/=  9
5 basendx 14557 . . . . . 6  |-  ( Base `  ndx )  =  1
6 tsetndx 14659 . . . . . 6  |-  (TopSet `  ndx )  =  9
75, 6neeq12i 2756 . . . . 5  |-  ( (
Base `  ndx )  =/=  (TopSet `  ndx )  <->  1  =/=  9 )
84, 7mpbir 209 . . . 4  |-  ( Base `  ndx )  =/=  (TopSet ` 
ndx )
91, 8setsnid 14549 . . 3  |-  ( Base `  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } )  =  ( Base `  ( { <. ( Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U
) >. ) )
10 ustbas2 20596 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  dom  U. U )
11 uniexg 6592 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  U. U  e. 
_V )
12 dmexg 6726 . . . . 5  |-  ( U. U  e.  _V  ->  dom  U. U  e.  _V )
13 eqid 2467 . . . . . 6  |-  { <. (
Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. }  =  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. }
14 df-unif 14595 . . . . . 6  |-  UnifSet  = Slot ; 1 3
15 1nn 10559 . . . . . . 7  |-  1  e.  NN
16 3nn0 10825 . . . . . . 7  |-  3  e.  NN0
17 1nn0 10823 . . . . . . 7  |-  1  e.  NN0
18 1lt10 10758 . . . . . . 7  |-  1  <  10
1915, 16, 17, 18declti 11013 . . . . . 6  |-  1  < ; 1
3
20 3nn 10706 . . . . . . 7  |-  3  e.  NN
2117, 20decnncl 11001 . . . . . 6  |- ; 1 3  e.  NN
2213, 14, 19, 212strbas 14609 . . . . 5  |-  ( dom  U. U  e.  _V  ->  dom  U. U  =  ( Base `  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } ) )
2311, 12, 223syl 20 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  dom  U. U  =  ( Base `  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } ) )
2410, 23eqtrd 2508 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  ( Base `  { <. ( Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } ) )
25 tuslem.k . . . . 5  |-  K  =  (toUnifSp `  U )
26 tusval 20637 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  (toUnifSp `  U
)  =  ( {
<. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )
2725, 26syl5eq 2520 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  K  =  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )
2827fveq2d 5876 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( Base `  K )  =  (
Base `  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) ) )
299, 24, 283eqtr4a 2534 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  ( Base `  K )
)
30 unifid 14678 . . . 4  |-  UnifSet  = Slot  ( UnifSet
`  ndx )
31 9re 10634 . . . . . 6  |-  9  e.  RR
32 9nn0 10831 . . . . . . 7  |-  9  e.  NN0
33 9lt10 10750 . . . . . . 7  |-  9  <  10
3415, 16, 32, 33declti 11013 . . . . . 6  |-  9  < ; 1
3
3531, 34gtneii 9708 . . . . 5  |- ; 1 3  =/=  9
36 unifndx 14677 . . . . . 6  |-  ( UnifSet ` 
ndx )  = ; 1 3
3736, 6neeq12i 2756 . . . . 5  |-  ( (
UnifSet `  ndx )  =/=  (TopSet `  ndx )  <-> ; 1 3  =/=  9
)
3835, 37mpbir 209 . . . 4  |-  ( UnifSet ` 
ndx )  =/=  (TopSet ` 
ndx )
3930, 38setsnid 14549 . . 3  |-  ( UnifSet `  { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } )  =  ( UnifSet `  ( { <. ( Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U
) >. ) )
4013, 14, 19, 212strop 14610 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  U  =  ( UnifSet `  { <. ( Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } ) )
4127fveq2d 5876 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  ( UnifSet `  K )  =  (
UnifSet `  ( { <. (
Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U
) >. ) ) )
4239, 40, 413eqtr4a 2534 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  U  =  ( UnifSet `  K )
)
4327fveq2d 5876 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  (TopSet `  K
)  =  (TopSet `  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) ) )
44 prex 4695 . . . . 5  |-  { <. (
Base `  ndx ) ,  dom  U. U >. , 
<. ( UnifSet `  ndx ) ,  U >. }  e.  _V
45 fvex 5882 . . . . 5  |-  (unifTop `  U
)  e.  _V
46 tsetid 14660 . . . . . 6  |- TopSet  = Slot  (TopSet ` 
ndx )
4746setsid 14548 . . . . 5  |-  ( ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. }  e.  _V  /\  (unifTop `  U )  e.  _V )  ->  (unifTop `  U )  =  (TopSet `  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) ) )
4844, 45, 47mp2an 672 . . . 4  |-  (unifTop `  U
)  =  (TopSet `  ( { <. ( Base `  ndx ) ,  dom  U. U >. ,  <. ( UnifSet `  ndx ) ,  U >. } sSet  <. (TopSet `  ndx ) ,  (unifTop `  U ) >. ) )
4943, 48syl6reqr 2527 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  (TopSet `  K ) )
50 utopbas 20606 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  X  =  U. (unifTop `  U )
)
5149unieqd 4261 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  U. (unifTop `  U )  =  U. (TopSet `  K ) )
5250, 29, 513eqtr3rd 2517 . . . . 5  |-  ( U  e.  (UnifOn `  X
)  ->  U. (TopSet `  K )  =  (
Base `  K )
)
5352oveq2d 6311 . . . 4  |-  ( U  e.  (UnifOn `  X
)  ->  ( (TopSet `  K )t  U. (TopSet `  K
) )  =  ( (TopSet `  K )t  ( Base `  K ) ) )
54 fvex 5882 . . . . 5  |-  (TopSet `  K )  e.  _V
55 eqid 2467 . . . . . 6  |-  U. (TopSet `  K )  =  U. (TopSet `  K )
5655restid 14706 . . . . 5  |-  ( (TopSet `  K )  e.  _V  ->  ( (TopSet `  K
)t  U. (TopSet `  K )
)  =  (TopSet `  K ) )
5754, 56ax-mp 5 . . . 4  |-  ( (TopSet `  K )t  U. (TopSet `  K
) )  =  (TopSet `  K )
58 eqid 2467 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
59 eqid 2467 . . . . 5  |-  (TopSet `  K )  =  (TopSet `  K )
6058, 59topnval 14707 . . . 4  |-  ( (TopSet `  K )t  ( Base `  K
) )  =  (
TopOpen `  K )
6153, 57, 603eqtr3g 2531 . . 3  |-  ( U  e.  (UnifOn `  X
)  ->  (TopSet `  K
)  =  ( TopOpen `  K ) )
6249, 61eqtrd 2508 . 2  |-  ( U  e.  (UnifOn `  X
)  ->  (unifTop `  U
)  =  ( TopOpen `  K ) )
6329, 42, 623jca 1176 1  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  =  ( Base `  K
)  /\  U  =  ( UnifSet `  K )  /\  (unifTop `  U )  =  ( TopOpen `  K
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3118   {cpr 4035   <.cop 4039   U.cuni 4251   dom cdm 5005   ` cfv 5594  (class class class)co 6295   1c1 9505   3c3 10598   9c9 10604  ;cdc 10988   ndxcnx 14504   sSet csts 14505   Basecbs 14507  TopSetcts 14578   UnifSetcunif 14582   ↾t crest 14693   TopOpenctopn 14694  UnifOncust 20570  unifTopcutop 20601  toUnifSpctus 20626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-fz 11685  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-tset 14591  df-unif 14595  df-rest 14695  df-topn 14696  df-ust 20571  df-utop 20602  df-tus 20629
This theorem is referenced by:  tusbas  20639  tusunif  20640  tustopn  20642  tususp  20643
  Copyright terms: Public domain W3C validator