MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttukeylem5 Structured version   Unicode version

Theorem ttukeylem5 8806
Description: Lemma for ttukey 8811. The  G function forms a (transfinitely long) chain of inclusions. (Contributed by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
ttukeylem.1  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
ttukeylem.2  |-  ( ph  ->  B  e.  A )
ttukeylem.3  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
ttukeylem.4  |-  G  = recs ( ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  e.  A ,  { ( F `  U. dom  z ) } ,  (/) ) ) ) ) )
Assertion
Ref Expression
ttukeylem5  |-  ( (
ph  /\  ( C  e.  On  /\  D  e.  On  /\  C  C_  D ) )  -> 
( G `  C
)  C_  ( G `  D ) )
Distinct variable groups:    x, z, C    x, D    x, G, z    ph, z    x, A, z    x, B, z   
x, F, z
Allowed substitution hints:    ph( x)    D( z)

Proof of Theorem ttukeylem5
Dummy variables  a 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sseq2 3439 . . . . . 6  |-  ( y  =  a  ->  ( C  C_  y  <->  C  C_  a
) )
2 fveq2 5774 . . . . . . 7  |-  ( y  =  a  ->  ( G `  y )  =  ( G `  a ) )
32sseq2d 3445 . . . . . 6  |-  ( y  =  a  ->  (
( G `  C
)  C_  ( G `  y )  <->  ( G `  C )  C_  ( G `  a )
) )
41, 3imbi12d 318 . . . . 5  |-  ( y  =  a  ->  (
( C  C_  y  ->  ( G `  C
)  C_  ( G `  y ) )  <->  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) ) )
54imbi2d 314 . . . 4  |-  ( y  =  a  ->  (
( ( ph  /\  C  e.  On )  ->  ( C  C_  y  ->  ( G `  C
)  C_  ( G `  y ) ) )  <-> 
( ( ph  /\  C  e.  On )  ->  ( C  C_  a  ->  ( G `  C
)  C_  ( G `  a ) ) ) ) )
6 sseq2 3439 . . . . . 6  |-  ( y  =  D  ->  ( C  C_  y  <->  C  C_  D
) )
7 fveq2 5774 . . . . . . 7  |-  ( y  =  D  ->  ( G `  y )  =  ( G `  D ) )
87sseq2d 3445 . . . . . 6  |-  ( y  =  D  ->  (
( G `  C
)  C_  ( G `  y )  <->  ( G `  C )  C_  ( G `  D )
) )
96, 8imbi12d 318 . . . . 5  |-  ( y  =  D  ->  (
( C  C_  y  ->  ( G `  C
)  C_  ( G `  y ) )  <->  ( C  C_  D  ->  ( G `  C )  C_  ( G `  D )
) ) )
109imbi2d 314 . . . 4  |-  ( y  =  D  ->  (
( ( ph  /\  C  e.  On )  ->  ( C  C_  y  ->  ( G `  C
)  C_  ( G `  y ) ) )  <-> 
( ( ph  /\  C  e.  On )  ->  ( C  C_  D  ->  ( G `  C
)  C_  ( G `  D ) ) ) ) )
11 r19.21v 2787 . . . . 5  |-  ( A. a  e.  y  (
( ph  /\  C  e.  On )  ->  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a
) ) )  <->  ( ( ph  /\  C  e.  On )  ->  A. a  e.  y  ( C  C_  a  ->  ( G `  C
)  C_  ( G `  a ) ) ) )
12 simpllr 758 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) )  ->  C  e.  On )
13 simplr 753 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) )  ->  y  e.  On )
14 onsseleq 4833 . . . . . . . . . 10  |-  ( ( C  e.  On  /\  y  e.  On )  ->  ( C  C_  y  <->  ( C  e.  y  \/  C  =  y ) ) )
1512, 13, 14syl2anc 659 . . . . . . . . 9  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) )  ->  ( C  C_  y  <->  ( C  e.  y  \/  C  =  y ) ) )
16 sseq2 3439 . . . . . . . . . . . . 13  |-  ( if ( y  =  (/) ,  B ,  U. ( G " y ) )  =  if ( y  =  U. y ,  if ( y  =  (/) ,  B ,  U. ( G " y ) ) ,  ( ( G `  U. y
)  u.  if ( ( ( G `  U. y )  u.  {
( F `  U. y ) } )  e.  A ,  {
( F `  U. y ) } ,  (/) ) ) )  -> 
( ( G `  C )  C_  if ( y  =  (/) ,  B ,  U. ( G " y ) )  <-> 
( G `  C
)  C_  if (
y  =  U. y ,  if ( y  =  (/) ,  B ,  U. ( G " y ) ) ,  ( ( G `  U. y
)  u.  if ( ( ( G `  U. y )  u.  {
( F `  U. y ) } )  e.  A ,  {
( F `  U. y ) } ,  (/) ) ) ) ) )
17 sseq2 3439 . . . . . . . . . . . . 13  |-  ( ( ( G `  U. y )  u.  if ( ( ( G `
 U. y )  u.  { ( F `
 U. y ) } )  e.  A ,  { ( F `  U. y ) } ,  (/) ) )  =  if ( y  =  U. y ,  if (
y  =  (/) ,  B ,  U. ( G "
y ) ) ,  ( ( G `  U. y )  u.  if ( ( ( G `
 U. y )  u.  { ( F `
 U. y ) } )  e.  A ,  { ( F `  U. y ) } ,  (/) ) ) )  -> 
( ( G `  C )  C_  (
( G `  U. y )  u.  if ( ( ( G `
 U. y )  u.  { ( F `
 U. y ) } )  e.  A ,  { ( F `  U. y ) } ,  (/) ) )  <->  ( G `  C )  C_  if ( y  =  U. y ,  if (
y  =  (/) ,  B ,  U. ( G "
y ) ) ,  ( ( G `  U. y )  u.  if ( ( ( G `
 U. y )  u.  { ( F `
 U. y ) } )  e.  A ,  { ( F `  U. y ) } ,  (/) ) ) ) ) )
18 ttukeylem.4 . . . . . . . . . . . . . . . . . . 19  |-  G  = recs ( ( z  e. 
_V  |->  if ( dom  z  =  U. dom  z ,  if ( dom  z  =  (/) ,  B ,  U. ran  z ) ,  ( ( z `
 U. dom  z
)  u.  if ( ( ( z `  U. dom  z )  u. 
{ ( F `  U. dom  z ) } )  e.  A ,  { ( F `  U. dom  z ) } ,  (/) ) ) ) ) )
1918tfr1 6984 . . . . . . . . . . . . . . . . . 18  |-  G  Fn  On
2019a1i 11 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  ->  G  Fn  On )
21 simplr 753 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
y  e.  On )
22 onss 6525 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  ->  y  C_  On )
2321, 22syl 16 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
y  C_  On )
24 simprr 755 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  ->  C  e.  y )
25 fnfvima 6051 . . . . . . . . . . . . . . . . 17  |-  ( ( G  Fn  On  /\  y  C_  On  /\  C  e.  y )  ->  ( G `  C )  e.  ( G " y
) )
2620, 23, 24, 25syl3anc 1226 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
( G `  C
)  e.  ( G
" y ) )
27 elssuni 4192 . . . . . . . . . . . . . . . 16  |-  ( ( G `  C )  e.  ( G "
y )  ->  ( G `  C )  C_ 
U. ( G "
y ) )
2826, 27syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
( G `  C
)  C_  U. ( G " y ) )
29 n0i 3716 . . . . . . . . . . . . . . . 16  |-  ( C  e.  y  ->  -.  y  =  (/) )
30 iffalse 3866 . . . . . . . . . . . . . . . 16  |-  ( -.  y  =  (/)  ->  if ( y  =  (/) ,  B ,  U. ( G " y ) )  =  U. ( G
" y ) )
3124, 29, 303syl 20 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  ->  if ( y  =  (/) ,  B ,  U. ( G " y ) )  =  U. ( G
" y ) )
3228, 31sseqtr4d 3454 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
( G `  C
)  C_  if (
y  =  (/) ,  B ,  U. ( G "
y ) ) )
3332adantr 463 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  /\  y  =  U. y
)  ->  ( G `  C )  C_  if ( y  =  (/) ,  B ,  U. ( G " y ) ) )
34 vex 3037 . . . . . . . . . . . . . . . . . 18  |-  y  e. 
_V
3534uniex 6495 . . . . . . . . . . . . . . . . 17  |-  U. y  e.  _V
3635sucid 4871 . . . . . . . . . . . . . . . 16  |-  U. y  e.  suc  U. y
37 eloni 4802 . . . . . . . . . . . . . . . . . 18  |-  ( y  e.  On  ->  Ord  y )
38 orduniorsuc 6564 . . . . . . . . . . . . . . . . . 18  |-  ( Ord  y  ->  ( y  =  U. y  \/  y  =  suc  U. y ) )
3921, 37, 383syl 20 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
( y  =  U. y  \/  y  =  suc  U. y ) )
4039orcanai 911 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  /\  -.  y  =  U. y )  ->  y  =  suc  U. y )
4136, 40syl5eleqr 2477 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  /\  -.  y  =  U. y )  ->  U. y  e.  y )
42 simplrl 759 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  /\  -.  y  =  U. y )  ->  A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) )
4324adantr 463 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  /\  -.  y  =  U. y )  ->  C  e.  y )
44 elssuni 4192 . . . . . . . . . . . . . . . 16  |-  ( C  e.  y  ->  C  C_ 
U. y )
4543, 44syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  /\  -.  y  =  U. y )  ->  C  C_ 
U. y )
46 sseq2 3439 . . . . . . . . . . . . . . . . 17  |-  ( a  =  U. y  -> 
( C  C_  a  <->  C 
C_  U. y ) )
47 fveq2 5774 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  U. y  -> 
( G `  a
)  =  ( G `
 U. y ) )
4847sseq2d 3445 . . . . . . . . . . . . . . . . 17  |-  ( a  =  U. y  -> 
( ( G `  C )  C_  ( G `  a )  <->  ( G `  C ) 
C_  ( G `  U. y ) ) )
4946, 48imbi12d 318 . . . . . . . . . . . . . . . 16  |-  ( a  =  U. y  -> 
( ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  <->  ( C  C_  U. y  ->  ( G `  C )  C_  ( G `  U. y ) ) ) )
5049rspcv 3131 . . . . . . . . . . . . . . 15  |-  ( U. y  e.  y  ->  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C
)  C_  ( G `  a ) )  -> 
( C  C_  U. y  ->  ( G `  C
)  C_  ( G `  U. y ) ) ) )
5141, 42, 45, 50syl3c 61 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  /\  -.  y  =  U. y )  ->  ( G `  C )  C_  ( G `  U. y ) )
52 ssun1 3581 . . . . . . . . . . . . . 14  |-  ( G `
 U. y ) 
C_  ( ( G `
 U. y )  u.  if ( ( ( G `  U. y )  u.  {
( F `  U. y ) } )  e.  A ,  {
( F `  U. y ) } ,  (/) ) )
5351, 52syl6ss 3429 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  /\  -.  y  =  U. y )  ->  ( G `  C )  C_  ( ( G `  U. y )  u.  if ( ( ( G `
 U. y )  u.  { ( F `
 U. y ) } )  e.  A ,  { ( F `  U. y ) } ,  (/) ) ) )
5416, 17, 33, 53ifbothda 3892 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
( G `  C
)  C_  if (
y  =  U. y ,  if ( y  =  (/) ,  B ,  U. ( G " y ) ) ,  ( ( G `  U. y
)  u.  if ( ( ( G `  U. y )  u.  {
( F `  U. y ) } )  e.  A ,  {
( F `  U. y ) } ,  (/) ) ) ) )
55 simplll 757 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  ->  ph )
56 ttukeylem.1 . . . . . . . . . . . . . 14  |-  ( ph  ->  F : ( card `  ( U. A  \  B ) ) -1-1-onto-> ( U. A  \  B ) )
57 ttukeylem.2 . . . . . . . . . . . . . 14  |-  ( ph  ->  B  e.  A )
58 ttukeylem.3 . . . . . . . . . . . . . 14  |-  ( ph  ->  A. x ( x  e.  A  <->  ( ~P x  i^i  Fin )  C_  A ) )
5956, 57, 58, 18ttukeylem3 8804 . . . . . . . . . . . . 13  |-  ( (
ph  /\  y  e.  On )  ->  ( G `
 y )  =  if ( y  = 
U. y ,  if ( y  =  (/) ,  B ,  U. ( G " y ) ) ,  ( ( G `
 U. y )  u.  if ( ( ( G `  U. y )  u.  {
( F `  U. y ) } )  e.  A ,  {
( F `  U. y ) } ,  (/) ) ) ) )
6055, 21, 59syl2anc 659 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
( G `  y
)  =  if ( y  =  U. y ,  if ( y  =  (/) ,  B ,  U. ( G " y ) ) ,  ( ( G `  U. y
)  u.  if ( ( ( G `  U. y )  u.  {
( F `  U. y ) } )  e.  A ,  {
( F `  U. y ) } ,  (/) ) ) ) )
6154, 60sseqtr4d 3454 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  ( A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
)  /\  C  e.  y ) )  -> 
( G `  C
)  C_  ( G `  y ) )
6261expr 613 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) )  ->  ( C  e.  y  ->  ( G `  C ) 
C_  ( G `  y ) ) )
63 fveq2 5774 . . . . . . . . . . . 12  |-  ( C  =  y  ->  ( G `  C )  =  ( G `  y ) )
64 eqimss 3469 . . . . . . . . . . . 12  |-  ( ( G `  C )  =  ( G `  y )  ->  ( G `  C )  C_  ( G `  y
) )
6563, 64syl 16 . . . . . . . . . . 11  |-  ( C  =  y  ->  ( G `  C )  C_  ( G `  y
) )
6665a1i 11 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) )  ->  ( C  =  y  ->  ( G `  C ) 
C_  ( G `  y ) ) )
6762, 66jaod 378 . . . . . . . . 9  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) )  ->  (
( C  e.  y  \/  C  =  y )  ->  ( G `  C )  C_  ( G `  y )
) )
6815, 67sylbid 215 . . . . . . . 8  |-  ( ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  /\  A. a  e.  y  ( C  C_  a  ->  ( G `  C )  C_  ( G `  a )
) )  ->  ( C  C_  y  ->  ( G `  C )  C_  ( G `  y
) ) )
6968ex 432 . . . . . . 7  |-  ( ( ( ph  /\  C  e.  On )  /\  y  e.  On )  ->  ( A. a  e.  y 
( C  C_  a  ->  ( G `  C
)  C_  ( G `  a ) )  -> 
( C  C_  y  ->  ( G `  C
)  C_  ( G `  y ) ) ) )
7069expcom 433 . . . . . 6  |-  ( y  e.  On  ->  (
( ph  /\  C  e.  On )  ->  ( A. a  e.  y 
( C  C_  a  ->  ( G `  C
)  C_  ( G `  a ) )  -> 
( C  C_  y  ->  ( G `  C
)  C_  ( G `  y ) ) ) ) )
7170a2d 26 . . . . 5  |-  ( y  e.  On  ->  (
( ( ph  /\  C  e.  On )  ->  A. a  e.  y  ( C  C_  a  ->  ( G `  C
)  C_  ( G `  a ) ) )  ->  ( ( ph  /\  C  e.  On )  ->  ( C  C_  y  ->  ( G `  C )  C_  ( G `  y )
) ) ) )
7211, 71syl5bi 217 . . . 4  |-  ( y  e.  On  ->  ( A. a  e.  y 
( ( ph  /\  C  e.  On )  ->  ( C  C_  a  ->  ( G `  C
)  C_  ( G `  a ) ) )  ->  ( ( ph  /\  C  e.  On )  ->  ( C  C_  y  ->  ( G `  C )  C_  ( G `  y )
) ) ) )
735, 10, 72tfis3 6591 . . 3  |-  ( D  e.  On  ->  (
( ph  /\  C  e.  On )  ->  ( C  C_  D  ->  ( G `  C )  C_  ( G `  D
) ) ) )
7473expdcom 437 . 2  |-  ( ph  ->  ( C  e.  On  ->  ( D  e.  On  ->  ( C  C_  D  ->  ( G `  C
)  C_  ( G `  D ) ) ) ) )
75743imp2 1209 1  |-  ( (
ph  /\  ( C  e.  On  /\  D  e.  On  /\  C  C_  D ) )  -> 
( G `  C
)  C_  ( G `  D ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367    /\ w3a 971   A.wal 1397    = wceq 1399    e. wcel 1826   A.wral 2732   _Vcvv 3034    \ cdif 3386    u. cun 3387    i^i cin 3388    C_ wss 3389   (/)c0 3711   ifcif 3857   ~Pcpw 3927   {csn 3944   U.cuni 4163    |-> cmpt 4425   Ord word 4791   Oncon0 4792   suc csuc 4794   dom cdm 4913   ran crn 4914   "cima 4916    Fn wfn 5491   -1-1-onto->wf1o 5495   ` cfv 5496  recscrecs 6959   Fincfn 7435   cardccrd 8229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1626  ax-4 1639  ax-5 1712  ax-6 1755  ax-7 1798  ax-8 1828  ax-9 1830  ax-10 1845  ax-11 1850  ax-12 1862  ax-13 2006  ax-ext 2360  ax-rep 4478  ax-sep 4488  ax-nul 4496  ax-pow 4543  ax-pr 4601  ax-un 6491
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1402  df-ex 1621  df-nf 1625  df-sb 1748  df-eu 2222  df-mo 2223  df-clab 2368  df-cleq 2374  df-clel 2377  df-nfc 2532  df-ne 2579  df-ral 2737  df-rex 2738  df-reu 2739  df-rab 2741  df-v 3036  df-sbc 3253  df-csb 3349  df-dif 3392  df-un 3394  df-in 3396  df-ss 3403  df-pss 3405  df-nul 3712  df-if 3858  df-sn 3945  df-pr 3947  df-tp 3949  df-op 3951  df-uni 4164  df-iun 4245  df-br 4368  df-opab 4426  df-mpt 4427  df-tr 4461  df-eprel 4705  df-id 4709  df-po 4714  df-so 4715  df-fr 4752  df-we 4754  df-ord 4795  df-on 4796  df-suc 4798  df-xp 4919  df-rel 4920  df-cnv 4921  df-co 4922  df-dm 4923  df-rn 4924  df-res 4925  df-ima 4926  df-iota 5460  df-fun 5498  df-fn 5499  df-f 5500  df-f1 5501  df-fo 5502  df-f1o 5503  df-fv 5504  df-recs 6960
This theorem is referenced by:  ttukeylem6  8807  ttukeylem7  8808
  Copyright terms: Public domain W3C validator