MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ttgval Structured version   Unicode version

Theorem ttgval 23040
Description: Define a function to augment a complex Hilbert space with betweenness and a line definition. (Contributed by Thierry Arnoux, 25-Mar-2019.)
Hypotheses
Ref Expression
ttgval.n  |-  G  =  (toTG `  H )
ttgval.b  |-  B  =  ( Base `  H
)
ttgval.m  |-  .-  =  ( -g `  H )
ttgval.s  |-  .x.  =  ( .s `  H )
ttgval.i  |-  I  =  (Itv `  G )
Assertion
Ref Expression
ttgval  |-  ( H  e.  V  ->  ( G  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) >. ) sSet  <.
(LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } )
>. )  /\  I  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) ) )
Distinct variable groups:    x, k,
y, z    x, B, y, z    k, H, x, y, z    x, V, y, z    x,  .- , y, z    x,  .x. , y,
z
Allowed substitution hints:    B( k)    .x. ( k)    G( x, y, z, k)    I( x, y, z, k)    .- ( k)    V( k)

Proof of Theorem ttgval
Dummy variables  a 
b  c  i  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ttgval.n . . . . 5  |-  G  =  (toTG `  H )
21a1i 11 . . . 4  |-  ( H  e.  V  ->  G  =  (toTG `  H )
)
3 elex 2979 . . . . 5  |-  ( H  e.  V  ->  H  e.  _V )
4 fveq2 5688 . . . . . . . . . 10  |-  ( w  =  H  ->  ( Base `  w )  =  ( Base `  H
) )
5 ttgval.b . . . . . . . . . 10  |-  B  =  ( Base `  H
)
64, 5syl6eqr 2491 . . . . . . . . 9  |-  ( w  =  H  ->  ( Base `  w )  =  B )
7 fveq2 5688 . . . . . . . . . . . . . 14  |-  ( w  =  H  ->  ( -g `  w )  =  ( -g `  H
) )
8 ttgval.m . . . . . . . . . . . . . 14  |-  .-  =  ( -g `  H )
97, 8syl6eqr 2491 . . . . . . . . . . . . 13  |-  ( w  =  H  ->  ( -g `  w )  = 
.-  )
109oveqd 6107 . . . . . . . . . . . 12  |-  ( w  =  H  ->  (
z ( -g `  w
) x )  =  ( z  .-  x
) )
11 fveq2 5688 . . . . . . . . . . . . . 14  |-  ( w  =  H  ->  ( .s `  w )  =  ( .s `  H
) )
12 ttgval.s . . . . . . . . . . . . . 14  |-  .x.  =  ( .s `  H )
1311, 12syl6eqr 2491 . . . . . . . . . . . . 13  |-  ( w  =  H  ->  ( .s `  w )  = 
.x.  )
14 eqidd 2442 . . . . . . . . . . . . 13  |-  ( w  =  H  ->  k  =  k )
159oveqd 6107 . . . . . . . . . . . . 13  |-  ( w  =  H  ->  (
y ( -g `  w
) x )  =  ( y  .-  x
) )
1613, 14, 15oveq123d 6111 . . . . . . . . . . . 12  |-  ( w  =  H  ->  (
k ( .s `  w ) ( y ( -g `  w
) x ) )  =  ( k  .x.  ( y  .-  x
) ) )
1710, 16eqeq12d 2455 . . . . . . . . . . 11  |-  ( w  =  H  ->  (
( z ( -g `  w ) x )  =  ( k ( .s `  w ) ( y ( -g `  w ) x ) )  <->  ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) ) )
1817rexbidv 2734 . . . . . . . . . 10  |-  ( w  =  H  ->  ( E. k  e.  (
0 [,] 1 ) ( z ( -g `  w ) x )  =  ( k ( .s `  w ) ( y ( -g `  w ) x ) )  <->  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) ) )
196, 18rabeqbidv 2965 . . . . . . . . 9  |-  ( w  =  H  ->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) }  =  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } )
206, 6, 19mpt2eq123dv 6147 . . . . . . . 8  |-  ( w  =  H  ->  (
x  e.  ( Base `  w ) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  =  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) )
2120csbeq1d 3292 . . . . . . 7  |-  ( w  =  H  ->  [_ (
x  e.  ( Base `  w ) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. )  =  [_ (
x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. ) )
22 oveq1 6097 . . . . . . . . 9  |-  ( w  =  H  ->  (
w sSet  <. (Itv `  ndx ) ,  i >. )  =  ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) )
23 rabeq 2964 . . . . . . . . . . . 12  |-  ( (
Base `  w )  =  B  ->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) }  =  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
246, 23syl 16 . . . . . . . . . . 11  |-  ( w  =  H  ->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) }  =  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
256, 6, 24mpt2eq123dv 6147 . . . . . . . . . 10  |-  ( w  =  H  ->  (
x  e.  ( Base `  w ) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) )
2625opeq2d 4063 . . . . . . . . 9  |-  ( w  =  H  ->  <. (LineG ` 
ndx ) ,  ( x  e.  ( Base `  w ) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>.  =  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )
2722, 26oveq12d 6108 . . . . . . . 8  |-  ( w  =  H  ->  (
( w sSet  <. (Itv ` 
ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. )  =  (
( H sSet  <. (Itv `  ndx ) ,  i >.
) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. ) )
2827csbeq2dv 3684 . . . . . . 7  |-  ( w  =  H  ->  [_ (
x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. )  =  [_ (
x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  /  i ]_ ( ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )
)
2921, 28eqtrd 2473 . . . . . 6  |-  ( w  =  H  ->  [_ (
x  e.  ( Base `  w ) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. )  =  [_ (
x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  /  i ]_ ( ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )
)
30 df-ttg 23039 . . . . . 6  |- toTG  =  ( w  e.  _V  |->  [_ ( x  e.  ( Base `  w ) ,  y  e.  ( Base `  w )  |->  { z  e.  ( Base `  w
)  |  E. k  e.  ( 0 [,] 1
) ( z (
-g `  w )
x )  =  ( k ( .s `  w ) ( y ( -g `  w
) x ) ) } )  /  i ]_ ( ( w sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  ( Base `  w
) ,  y  e.  ( Base `  w
)  |->  { z  e.  ( Base `  w
)  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. ) )
31 ovex 6115 . . . . . . 7  |-  ( ( H sSet  <. (Itv `  ndx ) ,  i >. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>. )  e.  _V
3231csbex 4422 . . . . . 6  |-  [_ (
x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  /  i ]_ ( ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )  e.  _V
3329, 30, 32fvmpt 5771 . . . . 5  |-  ( H  e.  _V  ->  (toTG `  H )  =  [_ ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  /  i ]_ ( ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )
)
343, 33syl 16 . . . 4  |-  ( H  e.  V  ->  (toTG `  H )  =  [_ ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  /  i ]_ ( ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )
)
35 fvex 5698 . . . . . . . 8  |-  ( Base `  H )  e.  _V
365, 35eqeltri 2511 . . . . . . 7  |-  B  e. 
_V
3736, 36mpt2ex 6649 . . . . . 6  |-  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } )  e.  _V
3837a1i 11 . . . . 5  |-  ( H  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  e.  _V )
39 simpr 458 . . . . . . 7  |-  ( ( H  e.  V  /\  i  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) )  -> 
i  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) )
40 oveq2 6098 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
c  .-  a )  =  ( c  .-  x ) )
41 oveq2 6098 . . . . . . . . . . . 12  |-  ( a  =  x  ->  (
b  .-  a )  =  ( b  .-  x ) )
4241oveq2d 6106 . . . . . . . . . . 11  |-  ( a  =  x  ->  (
k  .x.  ( b  .-  a ) )  =  ( k  .x.  (
b  .-  x )
) )
4340, 42eqeq12d 2455 . . . . . . . . . 10  |-  ( a  =  x  ->  (
( c  .-  a
)  =  ( k 
.x.  ( b  .-  a ) )  <->  ( c  .-  x )  =  ( k  .x.  ( b 
.-  x ) ) ) )
4443rexbidv 2734 . . . . . . . . 9  |-  ( a  =  x  ->  ( E. k  e.  (
0 [,] 1 ) ( c  .-  a
)  =  ( k 
.x.  ( b  .-  a ) )  <->  E. k  e.  ( 0 [,] 1
) ( c  .-  x )  =  ( k  .x.  ( b 
.-  x ) ) ) )
4544rabbidv 2962 . . . . . . . 8  |-  ( a  =  x  ->  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  a )  =  ( k  .x.  ( b  .-  a
) ) }  =  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  x
)  =  ( k 
.x.  ( b  .-  x ) ) } )
46 oveq1 6097 . . . . . . . . . . . . 13  |-  ( b  =  y  ->  (
b  .-  x )  =  ( y  .-  x ) )
4746oveq2d 6106 . . . . . . . . . . . 12  |-  ( b  =  y  ->  (
k  .x.  ( b  .-  x ) )  =  ( k  .x.  (
y  .-  x )
) )
4847eqeq2d 2452 . . . . . . . . . . 11  |-  ( b  =  y  ->  (
( c  .-  x
)  =  ( k 
.x.  ( b  .-  x ) )  <->  ( c  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) ) )
4948rexbidv 2734 . . . . . . . . . 10  |-  ( b  =  y  ->  ( E. k  e.  (
0 [,] 1 ) ( c  .-  x
)  =  ( k 
.x.  ( b  .-  x ) )  <->  E. k  e.  ( 0 [,] 1
) ( c  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) ) )
5049rabbidv 2962 . . . . . . . . 9  |-  ( b  =  y  ->  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  x )  =  ( k  .x.  ( b  .-  x
) ) }  =  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )
51 oveq1 6097 . . . . . . . . . . . . 13  |-  ( c  =  z  ->  (
c  .-  x )  =  ( z  .-  x ) )
5251eqeq1d 2449 . . . . . . . . . . . 12  |-  ( c  =  z  ->  (
( c  .-  x
)  =  ( k 
.x.  ( y  .-  x ) )  <->  ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) ) )
5352rexbidv 2734 . . . . . . . . . . 11  |-  ( c  =  z  ->  ( E. k  e.  (
0 [,] 1 ) ( c  .-  x
)  =  ( k 
.x.  ( y  .-  x ) )  <->  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) ) )
5453cbvrabv 2969 . . . . . . . . . 10  |-  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  x )  =  ( k  .x.  ( y  .-  x
) ) }  =  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) }
5554a1i 11 . . . . . . . . 9  |-  ( b  =  y  ->  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  x )  =  ( k  .x.  ( y  .-  x
) ) }  =  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )
5650, 55eqtrd 2473 . . . . . . . 8  |-  ( b  =  y  ->  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  x )  =  ( k  .x.  ( b  .-  x
) ) }  =  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )
5745, 56cbvmpt2v 6165 . . . . . . 7  |-  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  a )  =  ( k  .x.  ( b  .-  a
) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } )
5839, 57syl6eqr 2491 . . . . . 6  |-  ( ( H  e.  V  /\  i  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) )  -> 
i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  a )  =  ( k  .x.  ( b  .-  a
) ) } ) )
59 simpr 458 . . . . . . . . . 10  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( c  .-  a )  =  ( k  .x.  ( b  .-  a
) ) } ) )
6059, 57syl6eq 2489 . . . . . . . . 9  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
i  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) )
6160opeq2d 4063 . . . . . . . 8  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  ->  <. (Itv `  ndx ) ,  i >.  =  <. (Itv
`  ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. )
6261oveq2d 6106 . . . . . . 7  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( H sSet  <. (Itv `  ndx ) ,  i >.
)  =  ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) )
6360oveqd 6107 . . . . . . . . . . . . 13  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( x i y )  =  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y ) )
6463eleq2d 2508 . . . . . . . . . . . 12  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( z  e.  ( x i y )  <-> 
z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y ) ) )
6560oveqd 6107 . . . . . . . . . . . . 13  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( z i y )  =  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y ) )
6665eleq2d 2508 . . . . . . . . . . . 12  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( x  e.  ( z i y )  <-> 
x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y ) ) )
6760oveqd 6107 . . . . . . . . . . . . 13  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( x i z )  =  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) z ) )
6867eleq2d 2508 . . . . . . . . . . . 12  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( y  e.  ( x i z )  <-> 
y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) z ) ) )
6964, 66, 683orbi123d 1283 . . . . . . . . . . 11  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) )  <->  ( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) z ) ) ) )
7069rabbidv 2962 . . . . . . . . . 10  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  ->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) }  =  { z  e.  B  |  ( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) z ) ) } )
71703ad2ant1 1004 . . . . . . . . 9  |-  ( ( ( H  e.  V  /\  i  =  (
a  e.  B , 
b  e.  B  |->  { c  e.  B  |  E. k  e.  (
0 [,] 1 ) ( c  .-  a
)  =  ( k 
.x.  ( b  .-  a ) ) } ) )  /\  x  e.  B  /\  y  e.  B )  ->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) }  =  { z  e.  B  |  ( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) z ) ) } )
7271mpt2eq3dva 6149 . . . . . . . 8  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x ( x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) z ) ) } ) )
7372opeq2d 4063 . . . . . . 7  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  ->  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } )
>.  =  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) z ) ) } ) >. )
7462, 73oveq12d 6108 . . . . . 6  |-  ( ( H  e.  V  /\  i  =  ( a  e.  B ,  b  e.  B  |->  { c  e.  B  |  E. k  e.  ( 0 [,] 1
) ( c  .-  a )  =  ( k  .x.  ( b 
.-  a ) ) } ) )  -> 
( ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) sSet  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) z ) ) } ) >.
) )
7558, 74syldan 467 . . . . 5  |-  ( ( H  e.  V  /\  i  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) )  -> 
( ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) sSet  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) z ) ) } ) >.
) )
7638, 75csbied 3311 . . . 4  |-  ( H  e.  V  ->  [_ (
x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  /  i ]_ ( ( H sSet  <. (Itv
`  ndx ) ,  i
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x i y )  \/  x  e.  ( z i y )  \/  y  e.  ( x i z ) ) } ) >. )  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) sSet  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) z ) ) } ) >.
) )
772, 34, 763eqtrd 2477 . . 3  |-  ( H  e.  V  ->  G  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) sSet  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) z ) ) } ) >.
) )
7877fveq2d 5692 . . . . . . . . . . . . 13  |-  ( H  e.  V  ->  (Itv `  G )  =  (Itv
`  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) sSet  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) z ) ) } ) >.
) ) )
79 itvid 22846 . . . . . . . . . . . . . 14  |- Itv  = Slot  (Itv ` 
ndx )
80 1nn0 10591 . . . . . . . . . . . . . . . . . 18  |-  1  e.  NN0
81 6nn 10479 . . . . . . . . . . . . . . . . . 18  |-  6  e.  NN
8280, 81decnncl 10764 . . . . . . . . . . . . . . . . 17  |- ; 1 6  e.  NN
8382nnrei 10327 . . . . . . . . . . . . . . . 16  |- ; 1 6  e.  RR
84 6nn0 10596 . . . . . . . . . . . . . . . . 17  |-  6  e.  NN0
85 7nn 10480 . . . . . . . . . . . . . . . . 17  |-  7  e.  NN
86 6lt7 10499 . . . . . . . . . . . . . . . . 17  |-  6  <  7
8780, 84, 85, 86declt 10772 . . . . . . . . . . . . . . . 16  |- ; 1 6  < ; 1 7
8883, 87ltneii 9483 . . . . . . . . . . . . . . 15  |- ; 1 6  =/= ; 1 7
89 itvndx 22844 . . . . . . . . . . . . . . . 16  |-  (Itv `  ndx )  = ; 1 6
90 lngndx 22845 . . . . . . . . . . . . . . . 16  |-  (LineG `  ndx )  = ; 1 7
9189, 90neeq12i 2618 . . . . . . . . . . . . . . 15  |-  ( (Itv
`  ndx )  =/=  (LineG ` 
ndx )  <-> ; 1 6  =/= ; 1 7 )
9288, 91mpbir 209 . . . . . . . . . . . . . 14  |-  (Itv `  ndx )  =/=  (LineG ` 
ndx )
9379, 92setsnid 14212 . . . . . . . . . . . . 13  |-  (Itv `  ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } )
>. ) )  =  (Itv
`  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) sSet  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) z ) ) } ) >.
) )
9478, 93syl6eqr 2491 . . . . . . . . . . . 12  |-  ( H  e.  V  ->  (Itv `  G )  =  (Itv
`  ( H sSet  <. (Itv
`  ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) ) )
95 ttgval.i . . . . . . . . . . . . 13  |-  I  =  (Itv `  G )
9695a1i 11 . . . . . . . . . . . 12  |-  ( H  e.  V  ->  I  =  (Itv `  G )
)
9779setsid 14211 . . . . . . . . . . . . 13  |-  ( ( H  e.  V  /\  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  e.  _V )  ->  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  =  (Itv `  ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } )
>. ) ) )
9838, 97mpdan 663 . . . . . . . . . . . 12  |-  ( H  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } )  =  (Itv `  ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } )
>. ) ) )
9994, 96, 983eqtr4d 2483 . . . . . . . . . . 11  |-  ( H  e.  V  ->  I  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) )
10099oveqd 6107 . . . . . . . . . 10  |-  ( H  e.  V  ->  (
x I y )  =  ( x ( x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y ) )
101100eleq2d 2508 . . . . . . . . 9  |-  ( H  e.  V  ->  (
z  e.  ( x I y )  <->  z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y ) ) )
10299oveqd 6107 . . . . . . . . . 10  |-  ( H  e.  V  ->  (
z I y )  =  ( z ( x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y ) )
103102eleq2d 2508 . . . . . . . . 9  |-  ( H  e.  V  ->  (
x  e.  ( z I y )  <->  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y ) ) )
10499oveqd 6107 . . . . . . . . . 10  |-  ( H  e.  V  ->  (
x I z )  =  ( x ( x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) z ) )
105104eleq2d 2508 . . . . . . . . 9  |-  ( H  e.  V  ->  (
y  e.  ( x I z )  <->  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) z ) ) )
106101, 103, 1053orbi123d 1283 . . . . . . . 8  |-  ( H  e.  V  ->  (
( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) )  <->  ( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) z ) ) ) )
107106rabbidv 2962 . . . . . . 7  |-  ( H  e.  V  ->  { z  e.  B  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) }  =  { z  e.  B  |  ( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) z ) ) } )
1081073ad2ant1 1004 . . . . . 6  |-  ( ( H  e.  V  /\  x  e.  B  /\  y  e.  B )  ->  { z  e.  B  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) }  =  { z  e.  B  |  ( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) z ) ) } )
109108mpt2eq3dva 6149 . . . . 5  |-  ( H  e.  V  ->  (
x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } )  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } ) z ) ) } ) )
110109opeq2d 4063 . . . 4  |-  ( H  e.  V  ->  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) >.  =  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x ( x  e.  B , 
y  e.  B  |->  { z  e.  B  |  E. k  e.  (
0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) z ) ) } ) >. )
111110oveq2d 6106 . . 3  |-  ( H  e.  V  ->  (
( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x )  =  ( k  .x.  ( y  .-  x
) ) } )
>. ) sSet  <. (LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) >. )  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) sSet  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  x  e.  ( z ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) y )  \/  y  e.  ( x ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) z ) ) } ) >.
) )
11277, 111eqtr4d 2476 . 2  |-  ( H  e.  V  ->  G  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) >. ) sSet  <. (LineG ` 
ndx ) ,  ( x  e.  B , 
y  e.  B  |->  { z  e.  B  | 
( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } ) >.
) )
113112, 99jca 529 1  |-  ( H  e.  V  ->  ( G  =  ( ( H sSet  <. (Itv `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1
) ( z  .-  x )  =  ( k  .x.  ( y 
.-  x ) ) } ) >. ) sSet  <.
(LineG `  ndx ) ,  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  ( z  e.  ( x I y )  \/  x  e.  ( z I y )  \/  y  e.  ( x I z ) ) } )
>. )  /\  I  =  ( x  e.  B ,  y  e.  B  |->  { z  e.  B  |  E. k  e.  ( 0 [,] 1 ) ( z  .-  x
)  =  ( k 
.x.  ( y  .-  x ) ) } ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    \/ w3o 959    = wceq 1364    e. wcel 1761    =/= wne 2604   E.wrex 2714   {crab 2717   _Vcvv 2970   [_csb 3285   <.cop 3880   ` cfv 5415  (class class class)co 6090    e. cmpt2 6092   0cc0 9278   1c1 9279   6c6 10371   7c7 10372  ;cdc 10751   [,]cicc 11299   ndxcnx 14167   sSet csts 14168   Basecbs 14170   .scvsca 14238   -gcsg 15409  Itvcitv 22840  LineGclng 22841  toTGcttg 23038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-fal 1370  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-dec 10752  df-ndx 14173  df-slot 14174  df-sets 14176  df-itv 22842  df-lng 22843  df-ttg 23039
This theorem is referenced by:  ttglem  23041  ttgitvval  23047
  Copyright terms: Public domain W3C validator