Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ttac Structured version   Unicode version

Theorem ttac 30571
Description: Tarski's theorem about choice: infxpidm 8926 is equivalent to ax-ac 8828. (Contributed by Stefan O'Rear, 4-Nov-2014.) (Proof shortened by Stefan O'Rear, 10-Jul-2015.)
Assertion
Ref Expression
ttac  |-  (CHOICE  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)

Proof of Theorem ttac
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 dfac10 8506 . 2  |-  (CHOICE  <->  dom  card  =  _V )
2 vex 3109 . . . . . 6  |-  c  e. 
_V
3 eleq2 2533 . . . . . 6  |-  ( dom 
card  =  _V  ->  ( c  e.  dom  card  <->  c  e.  _V ) )
42, 3mpbiri 233 . . . . 5  |-  ( dom 
card  =  _V  ->  c  e.  dom  card )
5 infxpidm2 8383 . . . . . 6  |-  ( ( c  e.  dom  card  /\ 
om  ~<_  c )  -> 
( c  X.  c
)  ~~  c )
65ex 434 . . . . 5  |-  ( c  e.  dom  card  ->  ( om  ~<_  c  ->  (
c  X.  c ) 
~~  c ) )
74, 6syl 16 . . . 4  |-  ( dom 
card  =  _V  ->  ( om  ~<_  c  ->  (
c  X.  c ) 
~~  c ) )
87alrimiv 1690 . . 3  |-  ( dom 
card  =  _V  ->  A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
9 finnum 8318 . . . . . . 7  |-  ( a  e.  Fin  ->  a  e.  dom  card )
109adantl 466 . . . . . 6  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  a  e.  Fin )  ->  a  e. 
dom  card )
11 harcl 7976 . . . . . . . . 9  |-  (har `  a )  e.  On
12 onenon 8319 . . . . . . . . 9  |-  ( (har
`  a )  e.  On  ->  (har `  a
)  e.  dom  card )
1311, 12ax-mp 5 . . . . . . . 8  |-  (har `  a )  e.  dom  card
14 fvex 5867 . . . . . . . . . . . . . 14  |-  (har `  a )  e.  _V
15 vex 3109 . . . . . . . . . . . . . 14  |-  a  e. 
_V
1614, 15unex 6573 . . . . . . . . . . . . 13  |-  ( (har
`  a )  u.  a )  e.  _V
17 harinf 30569 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  _V  /\  -.  a  e.  Fin )  ->  om  C_  (har `  a ) )
1815, 17mpan 670 . . . . . . . . . . . . . 14  |-  ( -.  a  e.  Fin  ->  om  C_  (har `  a )
)
19 ssun1 3660 . . . . . . . . . . . . . 14  |-  (har `  a )  C_  (
(har `  a )  u.  a )
2018, 19syl6ss 3509 . . . . . . . . . . . . 13  |-  ( -.  a  e.  Fin  ->  om  C_  ( (har `  a
)  u.  a ) )
21 ssdomg 7551 . . . . . . . . . . . . 13  |-  ( ( (har `  a )  u.  a )  e.  _V  ->  ( om  C_  (
(har `  a )  u.  a )  ->  om  ~<_  ( (har
`  a )  u.  a ) ) )
2216, 20, 21mpsyl 63 . . . . . . . . . . . 12  |-  ( -.  a  e.  Fin  ->  om  ~<_  ( (har `  a
)  u.  a ) )
23 breq2 4444 . . . . . . . . . . . . . 14  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( om  ~<_  c 
<->  om  ~<_  ( (har `  a )  u.  a
) ) )
24 xpeq12 5011 . . . . . . . . . . . . . . . 16  |-  ( ( c  =  ( (har
`  a )  u.  a )  /\  c  =  ( (har `  a )  u.  a
) )  ->  (
c  X.  c )  =  ( ( (har
`  a )  u.  a )  X.  (
(har `  a )  u.  a ) ) )
2524anidms 645 . . . . . . . . . . . . . . 15  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( c  X.  c )  =  ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) ) )
26 id 22 . . . . . . . . . . . . . . 15  |-  ( c  =  ( (har `  a )  u.  a
)  ->  c  =  ( (har `  a )  u.  a ) )
2725, 26breq12d 4453 . . . . . . . . . . . . . 14  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( (
c  X.  c ) 
~~  c  <->  ( (
(har `  a )  u.  a )  X.  (
(har `  a )  u.  a ) )  ~~  ( (har `  a )  u.  a ) ) )
2823, 27imbi12d 320 . . . . . . . . . . . . 13  |-  ( c  =  ( (har `  a )  u.  a
)  ->  ( ( om 
~<_  c  ->  ( c  X.  c )  ~~  c )  <->  ( om  ~<_  ( (har `  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) ) ) )
2916, 28spcv 3197 . . . . . . . . . . . 12  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  ( om  ~<_  ( (har
`  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) ) )
3022, 29syl5 32 . . . . . . . . . . 11  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  ( -.  a  e. 
Fin  ->  ( ( (har
`  a )  u.  a )  X.  (
(har `  a )  u.  a ) )  ~~  ( (har `  a )  u.  a ) ) )
3130imp 429 . . . . . . . . . 10  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a ) )
32 harndom 7979 . . . . . . . . . . . 12  |-  -.  (har `  a )  ~<_  a
33 ssdomg 7551 . . . . . . . . . . . . . 14  |-  ( ( (har `  a )  u.  a )  e.  _V  ->  ( (har `  a
)  C_  ( (har `  a )  u.  a
)  ->  (har `  a
)  ~<_  ( (har `  a )  u.  a
) ) )
3416, 19, 33mp2 9 . . . . . . . . . . . . 13  |-  (har `  a )  ~<_  ( (har
`  a )  u.  a )
35 domtr 7558 . . . . . . . . . . . . 13  |-  ( ( (har `  a )  ~<_  ( (har `  a )  u.  a )  /\  (
(har `  a )  u.  a )  ~<_  a )  ->  (har `  a
)  ~<_  a )
3634, 35mpan 670 . . . . . . . . . . . 12  |-  ( ( (har `  a )  u.  a )  ~<_  a  -> 
(har `  a )  ~<_  a )
3732, 36mto 176 . . . . . . . . . . 11  |-  -.  (
(har `  a )  u.  a )  ~<_  a
38 unxpwdom2 8003 . . . . . . . . . . 11  |-  ( ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a )  ->  (
( (har `  a
)  u.  a )  ~<_*  (har `  a )  \/  ( (har `  a
)  u.  a )  ~<_  a ) )
39 orel2 383 . . . . . . . . . . 11  |-  ( -.  ( (har `  a
)  u.  a )  ~<_  a  ->  ( (
( (har `  a
)  u.  a )  ~<_*  (har `  a )  \/  ( (har `  a
)  u.  a )  ~<_  a )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
) )
4037, 38, 39mpsyl 63 . . . . . . . . . 10  |-  ( ( ( (har `  a
)  u.  a )  X.  ( (har `  a )  u.  a
) )  ~~  (
(har `  a )  u.  a )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
)
4131, 40syl 16 . . . . . . . . 9  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  ~<_*  (har `  a )
)
42 wdomnumr 8434 . . . . . . . . . 10  |-  ( (har
`  a )  e. 
dom  card  ->  ( (
(har `  a )  u.  a )  ~<_*  (har `  a )  <->  ( (har `  a )  u.  a )  ~<_  (har `  a ) ) )
4313, 42ax-mp 5 . . . . . . . . 9  |-  ( ( (har `  a )  u.  a )  ~<_*  (har `  a )  <->  ( (har `  a )  u.  a )  ~<_  (har `  a ) )
4441, 43sylib 196 . . . . . . . 8  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  ~<_  (har `  a ) )
45 numdom 8408 . . . . . . . 8  |-  ( ( (har `  a )  e.  dom  card  /\  (
(har `  a )  u.  a )  ~<_  (har `  a ) )  -> 
( (har `  a
)  u.  a )  e.  dom  card )
4613, 44, 45sylancr 663 . . . . . . 7  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  (
(har `  a )  u.  a )  e.  dom  card )
47 ssun2 3661 . . . . . . 7  |-  a  C_  ( (har `  a )  u.  a )
48 ssnum 8409 . . . . . . 7  |-  ( ( ( (har `  a
)  u.  a )  e.  dom  card  /\  a  C_  ( (har `  a
)  u.  a ) )  ->  a  e.  dom  card )
4946, 47, 48sylancl 662 . . . . . 6  |-  ( ( A. c ( om  ~<_  c  ->  ( c  X.  c )  ~~  c
)  /\  -.  a  e.  Fin )  ->  a  e.  dom  card )
5010, 49pm2.61dan 789 . . . . 5  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  a  e.  dom  card )
5150alrimiv 1690 . . . 4  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  A. a  a  e. 
dom  card )
52 eqv 3794 . . . 4  |-  ( dom 
card  =  _V  <->  A. a 
a  e.  dom  card )
5351, 52sylibr 212 . . 3  |-  ( A. c ( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )  ->  dom  card  =  _V )
548, 53impbii 188 . 2  |-  ( dom 
card  =  _V  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
551, 54bitri 249 1  |-  (CHOICE  <->  A. c
( om  ~<_  c  -> 
( c  X.  c
)  ~~  c )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369   A.wal 1372    = wceq 1374    e. wcel 1762   _Vcvv 3106    u. cun 3467    C_ wss 3469   class class class wbr 4440   Oncon0 4871    X. cxp 4990   dom cdm 4992   ` cfv 5579   omcom 6671    ~~ cen 7503    ~<_ cdom 7504   Fincfn 7506  harchar 7971    ~<_* cwdom 7972   cardccrd 8305  CHOICEwac 8485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-inf2 8047
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-isom 5588  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-oadd 7124  df-er 7301  df-map 7412  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-oi 7924  df-har 7973  df-wdom 7974  df-card 8309  df-acn 8312  df-ac 8486
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator