MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxplem2 Structured version   Unicode version

Theorem tsmsxplem2 20524
Description: Lemma for tsmsxp 20525. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b  |-  B  =  ( Base `  G
)
tsmsxp.g  |-  ( ph  ->  G  e. CMnd )
tsmsxp.2  |-  ( ph  ->  G  e.  TopGrp )
tsmsxp.a  |-  ( ph  ->  A  e.  V )
tsmsxp.c  |-  ( ph  ->  C  e.  W )
tsmsxp.f  |-  ( ph  ->  F : ( A  X.  C ) --> B )
tsmsxp.h  |-  ( ph  ->  H : A --> B )
tsmsxp.1  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  ( G tsums  ( k  e.  C  |->  ( j F k ) ) ) )
tsmsxp.j  |-  J  =  ( TopOpen `  G )
tsmsxp.z  |-  .0.  =  ( 0g `  G )
tsmsxp.p  |-  .+  =  ( +g  `  G )
tsmsxp.m  |-  .-  =  ( -g `  G )
tsmsxp.l  |-  ( ph  ->  L  e.  J )
tsmsxp.3  |-  ( ph  ->  .0.  e.  L )
tsmsxp.k  |-  ( ph  ->  K  e.  ( ~P A  i^i  Fin )
)
tsmsxp.4  |-  ( ph  ->  A. c  e.  S  A. d  e.  T  ( c  .+  d
)  e.  U )
tsmsxp.n  |-  ( ph  ->  N  e.  ( ~P C  i^i  Fin )
)
tsmsxp.s  |-  ( ph  ->  D  C_  ( K  X.  N ) )
tsmsxp.x  |-  ( ph  ->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) ) )  e.  L )
tsmsxp.5  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  e.  S )
tsmsxp.6  |-  ( ph  ->  A. g  e.  ( L  ^m  K ) ( G  gsumg  g )  e.  T
)
Assertion
Ref Expression
tsmsxplem2  |-  ( ph  ->  ( G  gsumg  ( H  |`  K ) )  e.  U )
Distinct variable groups:    g, k,  .0.    c, d, g, j, k, x, G    B, g, k    D, g, j, k, x    g, L, j, x    A, g, j, k    K, c, d, g, j, k, x    S, c    H, d, g, j, k, x    N, c, d, g, x    U, c, d    .- , d,
g, j, x    C, g, j, k    T, c, d, g    .+ , c,
d, g    F, c,
d, g, j, k, x    ph, g, j, k
Allowed substitution hints:    ph( x, c, d)    A( x, c, d)    B( x, j, c, d)    C( x, c, d)    D( c, d)    .+ ( x, j, k)    S( x, g, j, k, d)    T( x, j, k)    U( x, g, j, k)    H( c)    J( x, g, j, k, c, d)    L( k, c, d)    .- ( k, c)    N( j, k)    V( x, g, j, k, c, d)    W( x, g, j, k, c, d)    .0. ( x, j, c, d)

Proof of Theorem tsmsxplem2
Dummy variables  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.2 . . . . 5  |-  ( ph  ->  G  e.  TopGrp )
2 tgpgrp 20445 . . . . 5  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
31, 2syl 16 . . . 4  |-  ( ph  ->  G  e.  Grp )
4 tsmsxp.g . . . 4  |-  ( ph  ->  G  e. CMnd )
5 isabl 16675 . . . 4  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
63, 4, 5sylanbrc 664 . . 3  |-  ( ph  ->  G  e.  Abel )
7 tsmsxp.b . . . 4  |-  B  =  ( Base `  G
)
8 tsmsxp.z . . . 4  |-  .0.  =  ( 0g `  G )
9 tsmsxp.k . . . . . 6  |-  ( ph  ->  K  e.  ( ~P A  i^i  Fin )
)
10 elfpw 7834 . . . . . . 7  |-  ( K  e.  ( ~P A  i^i  Fin )  <->  ( K  C_  A  /\  K  e. 
Fin ) )
1110simprbi 464 . . . . . 6  |-  ( K  e.  ( ~P A  i^i  Fin )  ->  K  e.  Fin )
129, 11syl 16 . . . . 5  |-  ( ph  ->  K  e.  Fin )
13 tsmsxp.n . . . . . 6  |-  ( ph  ->  N  e.  ( ~P C  i^i  Fin )
)
14 elfpw 7834 . . . . . . 7  |-  ( N  e.  ( ~P C  i^i  Fin )  <->  ( N  C_  C  /\  N  e. 
Fin ) )
1514simprbi 464 . . . . . 6  |-  ( N  e.  ( ~P C  i^i  Fin )  ->  N  e.  Fin )
1613, 15syl 16 . . . . 5  |-  ( ph  ->  N  e.  Fin )
17 xpfi 7803 . . . . 5  |-  ( ( K  e.  Fin  /\  N  e.  Fin )  ->  ( K  X.  N
)  e.  Fin )
1812, 16, 17syl2anc 661 . . . 4  |-  ( ph  ->  ( K  X.  N
)  e.  Fin )
19 tsmsxp.f . . . . 5  |-  ( ph  ->  F : ( A  X.  C ) --> B )
2010simplbi 460 . . . . . . 7  |-  ( K  e.  ( ~P A  i^i  Fin )  ->  K  C_  A )
219, 20syl 16 . . . . . 6  |-  ( ph  ->  K  C_  A )
2214simplbi 460 . . . . . . 7  |-  ( N  e.  ( ~P C  i^i  Fin )  ->  N  C_  C )
2313, 22syl 16 . . . . . 6  |-  ( ph  ->  N  C_  C )
24 xpss12 5114 . . . . . 6  |-  ( ( K  C_  A  /\  N  C_  C )  -> 
( K  X.  N
)  C_  ( A  X.  C ) )
2521, 23, 24syl2anc 661 . . . . 5  |-  ( ph  ->  ( K  X.  N
)  C_  ( A  X.  C ) )
26 fssres 5757 . . . . 5  |-  ( ( F : ( A  X.  C ) --> B  /\  ( K  X.  N )  C_  ( A  X.  C ) )  ->  ( F  |`  ( K  X.  N
) ) : ( K  X.  N ) --> B )
2719, 25, 26syl2anc 661 . . . 4  |-  ( ph  ->  ( F  |`  ( K  X.  N ) ) : ( K  X.  N ) --> B )
28 tsmsxp.3 . . . . 5  |-  ( ph  ->  .0.  e.  L )
2927, 18, 28fdmfifsupp 7851 . . . 4  |-  ( ph  ->  ( F  |`  ( K  X.  N ) ) finSupp  .0.  )
307, 8, 4, 18, 27, 29gsumcl 16796 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  e.  B )
31 tsmsxp.h . . . . 5  |-  ( ph  ->  H : A --> B )
32 fssres 5757 . . . . 5  |-  ( ( H : A --> B  /\  K  C_  A )  -> 
( H  |`  K ) : K --> B )
3331, 21, 32syl2anc 661 . . . 4  |-  ( ph  ->  ( H  |`  K ) : K --> B )
3433, 12, 28fdmfifsupp 7851 . . . 4  |-  ( ph  ->  ( H  |`  K ) finSupp  .0.  )
357, 8, 4, 12, 33, 34gsumcl 16796 . . 3  |-  ( ph  ->  ( G  gsumg  ( H  |`  K ) )  e.  B )
36 tsmsxp.p . . . 4  |-  .+  =  ( +g  `  G )
37 tsmsxp.m . . . 4  |-  .-  =  ( -g `  G )
387, 36, 37ablpncan3 16700 . . 3  |-  ( ( G  e.  Abel  /\  (
( G  gsumg  ( F  |`  ( K  X.  N ) ) )  e.  B  /\  ( G  gsumg  ( H  |`  K ) )  e.  B ) )  ->  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  =  ( G  gsumg  ( H  |`  K ) ) )
396, 30, 35, 38syl12anc 1226 . 2  |-  ( ph  ->  ( ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  =  ( G  gsumg  ( H  |`  K ) ) )
40 tsmsxp.5 . . 3  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  e.  S )
414adantr 465 . . . . . . . 8  |-  ( (
ph  /\  y  e.  K )  ->  G  e. CMnd )
42 snfi 7608 . . . . . . . . 9  |-  { y }  e.  Fin
4316adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  N  e.  Fin )
44 xpfi 7803 . . . . . . . . 9  |-  ( ( { y }  e.  Fin  /\  N  e.  Fin )  ->  ( { y }  X.  N )  e.  Fin )
4542, 43, 44sylancr 663 . . . . . . . 8  |-  ( (
ph  /\  y  e.  K )  ->  ( { y }  X.  N )  e.  Fin )
4619adantr 465 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  F : ( A  X.  C ) --> B )
4721sselda 3509 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  y  e.  A )
4847snssd 4178 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  { y }  C_  A )
4923adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  N  C_  C )
50 xpss12 5114 . . . . . . . . . 10  |-  ( ( { y }  C_  A  /\  N  C_  C
)  ->  ( {
y }  X.  N
)  C_  ( A  X.  C ) )
5148, 49, 50syl2anc 661 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  ( { y }  X.  N )  C_  ( A  X.  C ) )
52 fssres 5757 . . . . . . . . 9  |-  ( ( F : ( A  X.  C ) --> B  /\  ( { y }  X.  N ) 
C_  ( A  X.  C ) )  -> 
( F  |`  ( { y }  X.  N ) ) : ( { y }  X.  N ) --> B )
5346, 51, 52syl2anc 661 . . . . . . . 8  |-  ( (
ph  /\  y  e.  K )  ->  ( F  |`  ( { y }  X.  N ) ) : ( { y }  X.  N
) --> B )
54 fvex 5882 . . . . . . . . . . 11  |-  ( 0g
`  G )  e. 
_V
558, 54eqeltri 2551 . . . . . . . . . 10  |-  .0.  e.  _V
5655a1i 11 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  .0.  e.  _V )
5753, 45, 56fdmfifsupp 7851 . . . . . . . 8  |-  ( (
ph  /\  y  e.  K )  ->  ( F  |`  ( { y }  X.  N ) ) finSupp  .0.  )
587, 8, 41, 45, 53, 57gsumcl 16796 . . . . . . 7  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) )  e.  B )
59 eqid 2467 . . . . . . 7  |-  ( y  e.  K  |->  ( G 
gsumg  ( F  |`  ( { y }  X.  N
) ) ) )  =  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )
6058, 59fmptd 6056 . . . . . 6  |-  ( ph  ->  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) : K --> B )
61 ovex 6320 . . . . . . . 8  |-  ( G 
gsumg  ( F  |`  ( { y }  X.  N
) ) )  e. 
_V
6261a1i 11 . . . . . . 7  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) )  e.  _V )
6359, 12, 62, 28fsuppmptdm 7852 . . . . . 6  |-  ( ph  ->  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) finSupp  .0.  )
647, 8, 37, 6, 12, 33, 60, 34, 63gsumsub 16847 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( ( H  |`  K )  oF 
.-  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  =  ( ( G 
gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) ) )
65 fvex 5882 . . . . . . . 8  |-  ( H `
 y )  e. 
_V
6665a1i 11 . . . . . . 7  |-  ( (
ph  /\  y  e.  K )  ->  ( H `  y )  e.  _V )
6731, 21feqresmpt 5928 . . . . . . 7  |-  ( ph  ->  ( H  |`  K )  =  ( y  e.  K  |->  ( H `  y ) ) )
68 eqidd 2468 . . . . . . 7  |-  ( ph  ->  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )  =  ( y  e.  K  |->  ( G 
gsumg  ( F  |`  ( { y }  X.  N
) ) ) ) )
6912, 66, 62, 67, 68offval2 6551 . . . . . 6  |-  ( ph  ->  ( ( H  |`  K )  oF 
.-  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  =  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )
7069oveq2d 6311 . . . . 5  |-  ( ph  ->  ( G  gsumg  ( ( H  |`  K )  oF 
.-  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  =  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y ) 
.-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) ) )
71 cmnmnd 16686 . . . . . . . . . . . 12  |-  ( G  e. CMnd  ->  G  e.  Mnd )
7241, 71syl 16 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  G  e.  Mnd )
73 simpr 461 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  y  e.  K )
7446adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  F : ( A  X.  C ) --> B )
7547adantr 465 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  y  e.  A )
7649sselda 3509 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  z  e.  C )
7774, 75, 76fovrnd 6442 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  (
y F z )  e.  B )
78 eqid 2467 . . . . . . . . . . . . 13  |-  ( z  e.  N  |->  ( y F z ) )  =  ( z  e.  N  |->  ( y F z ) )
7977, 78fmptd 6056 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  K )  ->  (
z  e.  N  |->  ( y F z ) ) : N --> B )
80 ovex 6320 . . . . . . . . . . . . . 14  |-  ( y F z )  e. 
_V
8180a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  (
y F z )  e.  _V )
8278, 43, 81, 56fsuppmptdm 7852 . . . . . . . . . . . 12  |-  ( (
ph  /\  y  e.  K )  ->  (
z  e.  N  |->  ( y F z ) ) finSupp  .0.  )
837, 8, 41, 43, 79, 82gsumcl 16796 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) )  e.  B )
84 elsn 4047 . . . . . . . . . . . . . . . 16  |-  ( w  e.  { y }  <-> 
w  =  y )
85 ovres 6437 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  { y }  /\  z  e.  N )  ->  (
w ( F  |`  ( { y }  X.  N ) ) z )  =  ( w F z ) )
8684, 85sylanbr 473 . . . . . . . . . . . . . . 15  |-  ( ( w  =  y  /\  z  e.  N )  ->  ( w ( F  |`  ( { y }  X.  N ) ) z )  =  ( w F z ) )
87 oveq1 6302 . . . . . . . . . . . . . . . 16  |-  ( w  =  y  ->  (
w F z )  =  ( y F z ) )
8887adantr 465 . . . . . . . . . . . . . . 15  |-  ( ( w  =  y  /\  z  e.  N )  ->  ( w F z )  =  ( y F z ) )
8986, 88eqtrd 2508 . . . . . . . . . . . . . 14  |-  ( ( w  =  y  /\  z  e.  N )  ->  ( w ( F  |`  ( { y }  X.  N ) ) z )  =  ( y F z ) )
9089mpteq2dva 4539 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) )  =  ( z  e.  N  |->  ( y F z ) ) )
9190oveq2d 6311 . . . . . . . . . . . 12  |-  ( w  =  y  ->  ( G  gsumg  ( z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) ) )
927, 91gsumsn 16854 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  y  e.  K  /\  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) )  e.  B )  ->  ( G  gsumg  ( w  e.  {
y }  |->  ( G 
gsumg  ( z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) ) ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) ) )
9372, 73, 83, 92syl3anc 1228 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( w  e.  {
y }  |->  ( G 
gsumg  ( z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) ) ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) ) )
9442a1i 11 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  { y }  e.  Fin )
957, 8, 41, 94, 43, 53, 57gsumxp 16877 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) )  =  ( G  gsumg  ( w  e.  { y } 
|->  ( G  gsumg  ( z  e.  N  |->  ( w ( F  |`  ( { y }  X.  N ) ) z ) ) ) ) ) )
96 ovres 6437 . . . . . . . . . . . . 13  |-  ( ( y  e.  K  /\  z  e.  N )  ->  ( y ( F  |`  ( K  X.  N
) ) z )  =  ( y F z ) )
9796adantll 713 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  K )  /\  z  e.  N )  ->  (
y ( F  |`  ( K  X.  N
) ) z )  =  ( y F z ) )
9897mpteq2dva 4539 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  K )  ->  (
z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) )  =  ( z  e.  N  |->  ( y F z ) ) )
9998oveq2d 6311 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y F z ) ) ) )
10093, 95, 993eqtr4d 2518 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  K )  ->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) )  =  ( G  gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N ) ) z ) ) ) )
101100mpteq2dva 4539 . . . . . . . 8  |-  ( ph  ->  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )  =  ( y  e.  K  |->  ( G 
gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) ) ) ) )
102101oveq2d 6311 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  =  ( G  gsumg  ( y  e.  K  |->  ( G  gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) ) ) ) ) )
1037, 8, 4, 12, 16, 27, 29gsumxp 16877 . . . . . . 7  |-  ( ph  ->  ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  =  ( G 
gsumg  ( y  e.  K  |->  ( G  gsumg  ( z  e.  N  |->  ( y ( F  |`  ( K  X.  N
) ) z ) ) ) ) ) )
104102, 103eqtr4d 2511 . . . . . 6  |-  ( ph  ->  ( G  gsumg  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  =  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) )
105104oveq2d 6311 . . . . 5  |-  ( ph  ->  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( y  e.  K  |->  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  =  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) ) )
10664, 70, 1053eqtr3d 2516 . . . 4  |-  ( ph  ->  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  =  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) ) )
107 tsmsxp.x . . . . . . . 8  |-  ( ph  ->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) ) )  e.  L )
108 fveq2 5872 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( H `  x )  =  ( H `  y ) )
109 sneq 4043 . . . . . . . . . . . . . 14  |-  ( x  =  y  ->  { x }  =  { y } )
110109xpeq1d 5028 . . . . . . . . . . . . 13  |-  ( x  =  y  ->  ( { x }  X.  N )  =  ( { y }  X.  N ) )
111110reseq2d 5279 . . . . . . . . . . . 12  |-  ( x  =  y  ->  ( F  |`  ( { x }  X.  N ) )  =  ( F  |`  ( { y }  X.  N ) ) )
112111oveq2d 6311 . . . . . . . . . . 11  |-  ( x  =  y  ->  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) )  =  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )
113108, 112oveq12d 6313 . . . . . . . . . 10  |-  ( x  =  y  ->  (
( H `  x
)  .-  ( G  gsumg  ( F  |`  ( {
x }  X.  N
) ) ) )  =  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )
114113eleq1d 2536 . . . . . . . . 9  |-  ( x  =  y  ->  (
( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) ) )  e.  L  <->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )  e.  L ) )
115114rspccva 3218 . . . . . . . 8  |-  ( ( A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  N ) ) ) )  e.  L  /\  y  e.  K )  ->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) )  e.  L )
116107, 115sylan 471 . . . . . . 7  |-  ( (
ph  /\  y  e.  K )  ->  (
( H `  y
)  .-  ( G  gsumg  ( F  |`  ( {
y }  X.  N
) ) ) )  e.  L )
117 eqid 2467 . . . . . . 7  |-  ( y  e.  K  |->  ( ( H `  y ) 
.-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  =  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )
118116, 117fmptd 6056 . . . . . 6  |-  ( ph  ->  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) : K --> L )
119 tsmsxp.l . . . . . . 7  |-  ( ph  ->  L  e.  J )
120 elmapg 7445 . . . . . . 7  |-  ( ( L  e.  J  /\  K  e.  Fin )  ->  ( ( y  e.  K  |->  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  e.  ( L  ^m  K )  <-> 
( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) : K --> L ) )
121119, 12, 120syl2anc 661 . . . . . 6  |-  ( ph  ->  ( ( y  e.  K  |->  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  e.  ( L  ^m  K )  <-> 
( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) : K --> L ) )
122118, 121mpbird 232 . . . . 5  |-  ( ph  ->  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  e.  ( L  ^m  K ) )
123 tsmsxp.6 . . . . 5  |-  ( ph  ->  A. g  e.  ( L  ^m  K ) ( G  gsumg  g )  e.  T
)
124 oveq2 6303 . . . . . . 7  |-  ( g  =  ( y  e.  K  |->  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  ->  ( G  gsumg  g )  =  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) ) )
125124eleq1d 2536 . . . . . 6  |-  ( g  =  ( y  e.  K  |->  ( ( H `
 y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) )  ->  (
( G  gsumg  g )  e.  T  <->  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  e.  T ) )
126125rspcv 3215 . . . . 5  |-  ( ( y  e.  K  |->  ( ( H `  y
)  .-  ( G  gsumg  ( F  |`  ( {
y }  X.  N
) ) ) ) )  e.  ( L  ^m  K )  -> 
( A. g  e.  ( L  ^m  K
) ( G  gsumg  g )  e.  T  ->  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  e.  T ) )
127122, 123, 126sylc 60 . . . 4  |-  ( ph  ->  ( G  gsumg  ( y  e.  K  |->  ( ( H `  y )  .-  ( G  gsumg  ( F  |`  ( { y }  X.  N ) ) ) ) ) )  e.  T )
128106, 127eqeltrrd 2556 . . 3  |-  ( ph  ->  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) )  e.  T
)
129 tsmsxp.4 . . 3  |-  ( ph  ->  A. c  e.  S  A. d  e.  T  ( c  .+  d
)  e.  U )
130 oveq1 6302 . . . . 5  |-  ( c  =  ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  -> 
( c  .+  d
)  =  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  d ) )
131130eleq1d 2536 . . . 4  |-  ( c  =  ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  -> 
( ( c  .+  d )  e.  U  <->  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  d )  e.  U ) )
132 oveq2 6303 . . . . 5  |-  ( d  =  ( ( G 
gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) )  ->  (
( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  d )  =  ( ( G 
gsumg  ( F  |`  ( K  X.  N ) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) ) ) )
133132eleq1d 2536 . . . 4  |-  ( d  =  ( ( G 
gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) )  ->  (
( ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  .+  d )  e.  U  <->  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  e.  U ) )
134131, 133rspc2va 3229 . . 3  |-  ( ( ( ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  e.  S  /\  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) )  e.  T
)  /\  A. c  e.  S  A. d  e.  T  ( c  .+  d )  e.  U
)  ->  ( ( G  gsumg  ( F  |`  ( K  X.  N ) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G 
gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  e.  U )
13540, 128, 129, 134syl21anc 1227 . 2  |-  ( ph  ->  ( ( G  gsumg  ( F  |`  ( K  X.  N
) ) )  .+  ( ( G  gsumg  ( H  |`  K ) )  .-  ( G  gsumg  ( F  |`  ( K  X.  N ) ) ) ) )  e.  U )
13639, 135eqeltrrd 2556 1  |-  ( ph  ->  ( G  gsumg  ( H  |`  K ) )  e.  U )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118    i^i cin 3480    C_ wss 3481   ~Pcpw 4016   {csn 4033    |-> cmpt 4511    X. cxp 5003    |` cres 5007   -->wf 5590   ` cfv 5594  (class class class)co 6295    oFcof 6533    ^m cmap 7432   Fincfn 7528   Basecbs 14507   +g cplusg 14572   TopOpenctopn 14694   0gc0g 14712    gsumg cgsu 14713   Mndcmnd 15793   Grpcgrp 15925   -gcsg 15927  CMndccmn 16671   Abelcabl 16672   TopGrpctgp 20438   tsums ctsu 20492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-nn 10549  df-2 10606  df-n0 10808  df-z 10877  df-uz 11095  df-fz 11685  df-fzo 11805  df-seq 12088  df-hash 12386  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-0g 14714  df-gsum 14715  df-mre 14858  df-mrc 14859  df-acs 14861  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-mhm 15839  df-submnd 15840  df-grp 15929  df-minusg 15930  df-sbg 15931  df-mulg 15932  df-ghm 16137  df-cntz 16227  df-cmn 16673  df-abl 16674  df-tgp 20440
This theorem is referenced by:  tsmsxp  20525
  Copyright terms: Public domain W3C validator