MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsxplem1 Structured version   Unicode version

Theorem tsmsxplem1 21154
Description: Lemma for tsmsxp 21156. (Contributed by Mario Carneiro, 21-Sep-2015.)
Hypotheses
Ref Expression
tsmsxp.b  |-  B  =  ( Base `  G
)
tsmsxp.g  |-  ( ph  ->  G  e. CMnd )
tsmsxp.2  |-  ( ph  ->  G  e.  TopGrp )
tsmsxp.a  |-  ( ph  ->  A  e.  V )
tsmsxp.c  |-  ( ph  ->  C  e.  W )
tsmsxp.f  |-  ( ph  ->  F : ( A  X.  C ) --> B )
tsmsxp.h  |-  ( ph  ->  H : A --> B )
tsmsxp.1  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  ( G tsums  ( k  e.  C  |->  ( j F k ) ) ) )
tsmsxp.j  |-  J  =  ( TopOpen `  G )
tsmsxp.z  |-  .0.  =  ( 0g `  G )
tsmsxp.p  |-  .+  =  ( +g  `  G )
tsmsxp.m  |-  .-  =  ( -g `  G )
tsmsxp.l  |-  ( ph  ->  L  e.  J )
tsmsxp.3  |-  ( ph  ->  .0.  e.  L )
tsmsxp.k  |-  ( ph  ->  K  e.  ( ~P A  i^i  Fin )
)
tsmsxp.ks  |-  ( ph  ->  dom  D  C_  K
)
tsmsxp.d  |-  ( ph  ->  D  e.  ( ~P ( A  X.  C
)  i^i  Fin )
)
Assertion
Ref Expression
tsmsxplem1  |-  ( ph  ->  E. n  e.  ( ~P C  i^i  Fin ) ( ran  D  C_  n  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L ) )
Distinct variable groups:    .0. , k    j, k, n, x, G    B, k    D, j, k, n, x    j, L, n, x    A, j, k, n    j, K, k, n, x    j, H, k, n, x    .- , j, n, x    C, j, k, n    j, F, k, n, x    ph, j,
k, n
Allowed substitution hints:    ph( x)    A( x)    B( x, j, n)    C( x)    .+ ( x, j, k, n)    J( x, j, k, n)    L( k)    .- ( k)    V( x, j, k, n)    W( x, j, k, n)    .0. ( x, j, n)

Proof of Theorem tsmsxplem1
Dummy variables  g 
y  z  f are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsxp.k . . . 4  |-  ( ph  ->  K  e.  ( ~P A  i^i  Fin )
)
2 elfpw 7879 . . . . 5  |-  ( K  e.  ( ~P A  i^i  Fin )  <->  ( K  C_  A  /\  K  e. 
Fin ) )
32simprbi 465 . . . 4  |-  ( K  e.  ( ~P A  i^i  Fin )  ->  K  e.  Fin )
41, 3syl 17 . . 3  |-  ( ph  ->  K  e.  Fin )
52simplbi 461 . . . . . . 7  |-  ( K  e.  ( ~P A  i^i  Fin )  ->  K  C_  A )
61, 5syl 17 . . . . . 6  |-  ( ph  ->  K  C_  A )
76sselda 3464 . . . . 5  |-  ( (
ph  /\  j  e.  K )  ->  j  e.  A )
8 tsmsxp.b . . . . . 6  |-  B  =  ( Base `  G
)
9 tsmsxp.j . . . . . 6  |-  J  =  ( TopOpen `  G )
10 eqid 2422 . . . . . 6  |-  ( ~P C  i^i  Fin )  =  ( ~P C  i^i  Fin )
11 tsmsxp.g . . . . . . 7  |-  ( ph  ->  G  e. CMnd )
1211adantr 466 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  G  e. CMnd )
13 tsmsxp.2 . . . . . . . 8  |-  ( ph  ->  G  e.  TopGrp )
14 tgptps 21082 . . . . . . . 8  |-  ( G  e.  TopGrp  ->  G  e.  TopSp )
1513, 14syl 17 . . . . . . 7  |-  ( ph  ->  G  e.  TopSp )
1615adantr 466 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  G  e.  TopSp )
17 tsmsxp.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
1817adantr 466 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  C  e.  W )
19 tsmsxp.f . . . . . . . . 9  |-  ( ph  ->  F : ( A  X.  C ) --> B )
20 fovrn 6450 . . . . . . . . 9  |-  ( ( F : ( A  X.  C ) --> B  /\  j  e.  A  /\  k  e.  C
)  ->  ( j F k )  e.  B )
2119, 20syl3an1 1297 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A  /\  k  e.  C
)  ->  ( j F k )  e.  B )
22213expa 1205 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  A )  /\  k  e.  C )  ->  (
j F k )  e.  B )
23 eqid 2422 . . . . . . 7  |-  ( k  e.  C  |->  ( j F k ) )  =  ( k  e.  C  |->  ( j F k ) )
2422, 23fmptd 6058 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  (
k  e.  C  |->  ( j F k ) ) : C --> B )
25 tsmsxp.1 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  ( G tsums  ( k  e.  C  |->  ( j F k ) ) ) )
26 df-ima 4863 . . . . . . . 8  |-  ( ( g  e.  B  |->  ( ( H `  j
)  .-  g )
) " L )  =  ran  ( ( g  e.  B  |->  ( ( H `  j
)  .-  g )
)  |`  L )
279, 8tgptopon 21084 . . . . . . . . . . . . 13  |-  ( G  e.  TopGrp  ->  J  e.  (TopOn `  B ) )
2813, 27syl 17 . . . . . . . . . . . 12  |-  ( ph  ->  J  e.  (TopOn `  B ) )
29 tsmsxp.l . . . . . . . . . . . 12  |-  ( ph  ->  L  e.  J )
30 toponss 19931 . . . . . . . . . . . 12  |-  ( ( J  e.  (TopOn `  B )  /\  L  e.  J )  ->  L  C_  B )
3128, 29, 30syl2anc 665 . . . . . . . . . . 11  |-  ( ph  ->  L  C_  B )
3231adantr 466 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  L  C_  B )
3332resmptd 5172 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  (
( g  e.  B  |->  ( ( H `  j )  .-  g
) )  |`  L )  =  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )
3433rneqd 5078 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  ran  ( ( g  e.  B  |->  ( ( H `
 j )  .-  g ) )  |`  L )  =  ran  ( g  e.  L  |->  ( ( H `  j )  .-  g
) ) )
3526, 34syl5eq 2475 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
( g  e.  B  |->  ( ( H `  j )  .-  g
) ) " L
)  =  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) )
36 tsmsxp.h . . . . . . . . . . . . 13  |-  ( ph  ->  H : A --> B )
3736ffvelrnda 6034 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  B )
38 tsmsxp.p . . . . . . . . . . . . 13  |-  .+  =  ( +g  `  G )
39 eqid 2422 . . . . . . . . . . . . 13  |-  ( invg `  G )  =  ( invg `  G )
40 tsmsxp.m . . . . . . . . . . . . 13  |-  .-  =  ( -g `  G )
418, 38, 39, 40grpsubval 16697 . . . . . . . . . . . 12  |-  ( ( ( H `  j
)  e.  B  /\  g  e.  B )  ->  ( ( H `  j )  .-  g
)  =  ( ( H `  j ) 
.+  ( ( invg `  G ) `
 g ) ) )
4237, 41sylan 473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  A )  /\  g  e.  B )  ->  (
( H `  j
)  .-  g )  =  ( ( H `
 j )  .+  ( ( invg `  G ) `  g
) ) )
4342mpteq2dva 4507 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  (
g  e.  B  |->  ( ( H `  j
)  .-  g )
)  =  ( g  e.  B  |->  ( ( H `  j ) 
.+  ( ( invg `  G ) `
 g ) ) ) )
44 tgpgrp 21080 . . . . . . . . . . . . . 14  |-  ( G  e.  TopGrp  ->  G  e.  Grp )
4513, 44syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  G  e.  Grp )
4645adantr 466 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  G  e.  Grp )
478, 39grpinvcl 16699 . . . . . . . . . . . 12  |-  ( ( G  e.  Grp  /\  g  e.  B )  ->  ( ( invg `  G ) `  g
)  e.  B )
4846, 47sylan 473 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  A )  /\  g  e.  B )  ->  (
( invg `  G ) `  g
)  e.  B )
498, 39grpinvf 16698 . . . . . . . . . . . . 13  |-  ( G  e.  Grp  ->  ( invg `  G ) : B --> B )
5046, 49syl 17 . . . . . . . . . . . 12  |-  ( (
ph  /\  j  e.  A )  ->  ( invg `  G ) : B --> B )
5150feqmptd 5931 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  ( invg `  G )  =  ( g  e.  B  |->  ( ( invg `  G ) `
 g ) ) )
52 eqidd 2423 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  (
y  e.  B  |->  ( ( H `  j
)  .+  y )
)  =  ( y  e.  B  |->  ( ( H `  j ) 
.+  y ) ) )
53 oveq2 6310 . . . . . . . . . . 11  |-  ( y  =  ( ( invg `  G ) `
 g )  -> 
( ( H `  j )  .+  y
)  =  ( ( H `  j ) 
.+  ( ( invg `  G ) `
 g ) ) )
5448, 51, 52, 53fmptco 6068 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  (
( y  e.  B  |->  ( ( H `  j )  .+  y
) )  o.  ( invg `  G ) )  =  ( g  e.  B  |->  ( ( H `  j ) 
.+  ( ( invg `  G ) `
 g ) ) ) )
5543, 54eqtr4d 2466 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  (
g  e.  B  |->  ( ( H `  j
)  .-  g )
)  =  ( ( y  e.  B  |->  ( ( H `  j
)  .+  y )
)  o.  ( invg `  G ) ) )
5613adantr 466 . . . . . . . . . . 11  |-  ( (
ph  /\  j  e.  A )  ->  G  e.  TopGrp )
579, 39grpinvhmeo 21088 . . . . . . . . . . 11  |-  ( G  e.  TopGrp  ->  ( invg `  G )  e.  ( J Homeo J ) )
5856, 57syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  ( invg `  G )  e.  ( J Homeo J ) )
59 eqid 2422 . . . . . . . . . . . 12  |-  ( y  e.  B  |->  ( ( H `  j ) 
.+  y ) )  =  ( y  e.  B  |->  ( ( H `
 j )  .+  y ) )
6059, 8, 38, 9tgplacthmeo 21105 . . . . . . . . . . 11  |-  ( ( G  e.  TopGrp  /\  ( H `  j )  e.  B )  ->  (
y  e.  B  |->  ( ( H `  j
)  .+  y )
)  e.  ( J
Homeo J ) )
6156, 37, 60syl2anc 665 . . . . . . . . . 10  |-  ( (
ph  /\  j  e.  A )  ->  (
y  e.  B  |->  ( ( H `  j
)  .+  y )
)  e.  ( J
Homeo J ) )
62 hmeoco 20774 . . . . . . . . . 10  |-  ( ( ( invg `  G )  e.  ( J Homeo J )  /\  ( y  e.  B  |->  ( ( H `  j )  .+  y
) )  e.  ( J Homeo J ) )  ->  ( ( y  e.  B  |->  ( ( H `  j ) 
.+  y ) )  o.  ( invg `  G ) )  e.  ( J Homeo J ) )
6358, 61, 62syl2anc 665 . . . . . . . . 9  |-  ( (
ph  /\  j  e.  A )  ->  (
( y  e.  B  |->  ( ( H `  j )  .+  y
) )  o.  ( invg `  G ) )  e.  ( J
Homeo J ) )
6455, 63eqeltrd 2510 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  (
g  e.  B  |->  ( ( H `  j
)  .-  g )
)  e.  ( J
Homeo J ) )
6529adantr 466 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  L  e.  J )
66 hmeoima 20767 . . . . . . . 8  |-  ( ( ( g  e.  B  |->  ( ( H `  j )  .-  g
) )  e.  ( J Homeo J )  /\  L  e.  J )  ->  ( ( g  e.  B  |->  ( ( H `
 j )  .-  g ) ) " L )  e.  J
)
6764, 65, 66syl2anc 665 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
( g  e.  B  |->  ( ( H `  j )  .-  g
) ) " L
)  e.  J )
6835, 67eqeltrrd 2511 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  ran  ( g  e.  L  |->  ( ( H `  j )  .-  g
) )  e.  J
)
69 tsmsxp.z . . . . . . . . 9  |-  .0.  =  ( 0g `  G )
708, 69, 40grpsubid1 16727 . . . . . . . 8  |-  ( ( G  e.  Grp  /\  ( H `  j )  e.  B )  -> 
( ( H `  j )  .-  .0.  )  =  ( H `  j ) )
7146, 37, 70syl2anc 665 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
( H `  j
)  .-  .0.  )  =  ( H `  j ) )
72 tsmsxp.3 . . . . . . . . 9  |-  ( ph  ->  .0.  e.  L )
7372adantr 466 . . . . . . . 8  |-  ( (
ph  /\  j  e.  A )  ->  .0.  e.  L )
74 ovex 6330 . . . . . . . 8  |-  ( ( H `  j ) 
.-  .0.  )  e.  _V
75 eqid 2422 . . . . . . . . 9  |-  ( g  e.  L  |->  ( ( H `  j ) 
.-  g ) )  =  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )
76 oveq2 6310 . . . . . . . . 9  |-  ( g  =  .0.  ->  (
( H `  j
)  .-  g )  =  ( ( H `
 j )  .-  .0.  ) )
7775, 76elrnmpt1s 5098 . . . . . . . 8  |-  ( (  .0.  e.  L  /\  ( ( H `  j )  .-  .0.  )  e.  _V )  ->  ( ( H `  j )  .-  .0.  )  e.  ran  ( g  e.  L  |->  ( ( H `  j ) 
.-  g ) ) )
7873, 74, 77sylancl 666 . . . . . . 7  |-  ( (
ph  /\  j  e.  A )  ->  (
( H `  j
)  .-  .0.  )  e.  ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )
7971, 78eqeltrrd 2511 . . . . . 6  |-  ( (
ph  /\  j  e.  A )  ->  ( H `  j )  e.  ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )
808, 9, 10, 12, 16, 18, 24, 25, 68, 79tsmsi 21135 . . . . 5  |-  ( (
ph  /\  j  e.  A )  ->  E. y  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P C  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) )
817, 80syldan 472 . . . 4  |-  ( (
ph  /\  j  e.  K )  ->  E. y  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P C  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) )
8281ralrimiva 2839 . . 3  |-  ( ph  ->  A. j  e.  K  E. y  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P C  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
83 sseq1 3485 . . . . . 6  |-  ( y  =  ( f `  j )  ->  (
y  C_  z  <->  ( f `  j )  C_  z
) )
8483imbi1d 318 . . . . 5  |-  ( y  =  ( f `  j )  ->  (
( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <-> 
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )
8584ralbidv 2864 . . . 4  |-  ( y  =  ( f `  j )  ->  ( A. z  e.  ( ~P C  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <->  A. z  e.  ( ~P C  i^i  Fin )
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )
8685ac6sfi 7818 . . 3  |-  ( ( K  e.  Fin  /\  A. j  e.  K  E. y  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P C  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )  ->  E. f
( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `
 j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) ) )
874, 82, 86syl2anc 665 . 2  |-  ( ph  ->  E. f ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin )
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )
88 frn 5749 . . . . . . . . 9  |-  ( f : K --> ( ~P C  i^i  Fin )  ->  ran  f  C_  ( ~P C  i^i  Fin )
)
8988adantl 467 . . . . . . . 8  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  f  C_  ( ~P C  i^i  Fin ) )
90 inss1 3682 . . . . . . . 8  |-  ( ~P C  i^i  Fin )  C_ 
~P C
9189, 90syl6ss 3476 . . . . . . 7  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  f  C_  ~P C )
92 sspwuni 4385 . . . . . . 7  |-  ( ran  f  C_  ~P C  <->  U.
ran  f  C_  C
)
9391, 92sylib 199 . . . . . 6  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  U. ran  f  C_  C )
94 tsmsxp.d . . . . . . . . 9  |-  ( ph  ->  D  e.  ( ~P ( A  X.  C
)  i^i  Fin )
)
95 elfpw 7879 . . . . . . . . . 10  |-  ( D  e.  ( ~P ( A  X.  C )  i^i 
Fin )  <->  ( D  C_  ( A  X.  C
)  /\  D  e.  Fin ) )
9695simplbi 461 . . . . . . . . 9  |-  ( D  e.  ( ~P ( A  X.  C )  i^i 
Fin )  ->  D  C_  ( A  X.  C
) )
97 rnss 5079 . . . . . . . . 9  |-  ( D 
C_  ( A  X.  C )  ->  ran  D 
C_  ran  ( A  X.  C ) )
9894, 96, 973syl 18 . . . . . . . 8  |-  ( ph  ->  ran  D  C_  ran  ( A  X.  C
) )
99 rnxpss 5285 . . . . . . . 8  |-  ran  ( A  X.  C )  C_  C
10098, 99syl6ss 3476 . . . . . . 7  |-  ( ph  ->  ran  D  C_  C
)
101100adantr 466 . . . . . 6  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  D 
C_  C )
10293, 101unssd 3642 . . . . 5  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ( U. ran  f  u.  ran  D )  C_  C )
1034adantr 466 . . . . . . . 8  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  K  e.  Fin )
104 ffn 5743 . . . . . . . . . 10  |-  ( f : K --> ( ~P C  i^i  Fin )  ->  f  Fn  K )
105104adantl 467 . . . . . . . . 9  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  f  Fn  K )
106 dffn4 5813 . . . . . . . . 9  |-  ( f  Fn  K  <->  f : K -onto-> ran  f )
107105, 106sylib 199 . . . . . . . 8  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  f : K -onto-> ran  f )
108 fofi 7863 . . . . . . . 8  |-  ( ( K  e.  Fin  /\  f : K -onto-> ran  f
)  ->  ran  f  e. 
Fin )
109103, 107, 108syl2anc 665 . . . . . . 7  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  f  e.  Fin )
110 inss2 3683 . . . . . . . 8  |-  ( ~P C  i^i  Fin )  C_ 
Fin
11189, 110syl6ss 3476 . . . . . . 7  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  f  C_  Fin )
112 unifi 7866 . . . . . . 7  |-  ( ( ran  f  e.  Fin  /\ 
ran  f  C_  Fin )  ->  U. ran  f  e. 
Fin )
113109, 111, 112syl2anc 665 . . . . . 6  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  U. ran  f  e.  Fin )
11495simprbi 465 . . . . . . . 8  |-  ( D  e.  ( ~P ( A  X.  C )  i^i 
Fin )  ->  D  e.  Fin )
115 rnfi 7860 . . . . . . . 8  |-  ( D  e.  Fin  ->  ran  D  e.  Fin )
11694, 114, 1153syl 18 . . . . . . 7  |-  ( ph  ->  ran  D  e.  Fin )
117116adantr 466 . . . . . 6  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ran  D  e.  Fin )
118 unfi 7841 . . . . . 6  |-  ( ( U. ran  f  e. 
Fin  /\  ran  D  e. 
Fin )  ->  ( U. ran  f  u.  ran  D )  e.  Fin )
119113, 117, 118syl2anc 665 . . . . 5  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ( U. ran  f  u.  ran  D )  e.  Fin )
120 elfpw 7879 . . . . 5  |-  ( ( U. ran  f  u. 
ran  D )  e.  ( ~P C  i^i  Fin )  <->  ( ( U. ran  f  u.  ran  D )  C_  C  /\  ( U. ran  f  u. 
ran  D )  e. 
Fin ) )
121102, 119, 120sylanbrc 668 . . . 4  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ( U. ran  f  u.  ran  D )  e.  ( ~P C  i^i  Fin )
)
122121adantrr 721 . . 3  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  ( U. ran  f  u.  ran  D )  e.  ( ~P C  i^i  Fin )
)
123 ssun2 3630 . . . 4  |-  ran  D  C_  ( U. ran  f  u.  ran  D )
124123a1i 11 . . 3  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  ran  D 
C_  ( U. ran  f  u.  ran  D ) )
125121adantlr 719 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( U. ran  f  u.  ran  D )  e.  ( ~P C  i^i  Fin ) )
126 fvssunirn 5901 . . . . . . . . . . . . . 14  |-  ( f `
 j )  C_  U.
ran  f
127 ssun1 3629 . . . . . . . . . . . . . 14  |-  U. ran  f  C_  ( U. ran  f  u.  ran  D )
128126, 127sstri 3473 . . . . . . . . . . . . 13  |-  ( f `
 j )  C_  ( U. ran  f  u. 
ran  D )
129 id 23 . . . . . . . . . . . . 13  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  z  =  ( U. ran  f  u. 
ran  D ) )
130128, 129syl5sseqr 3513 . . . . . . . . . . . 12  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( f `  j )  C_  z
)
131 pm5.5 337 . . . . . . . . . . . 12  |-  ( ( f `  j ) 
C_  z  ->  (
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <-> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
132130, 131syl 17 . . . . . . . . . . 11  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( ( ( f `  j ) 
C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <-> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
133 reseq2 5116 . . . . . . . . . . . . 13  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( ( k  e.  C  |->  ( j F k ) )  |`  z )  =  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )
134133oveq2d 6318 . . . . . . . . . . . 12  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  =  ( G 
gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) ) )
135134eleq1d 2491 . . . . . . . . . . 11  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( ( G 
gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )  <->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
136132, 135bitrd 256 . . . . . . . . . 10  |-  ( z  =  ( U. ran  f  u.  ran  D )  ->  ( ( ( f `  j ) 
C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  <-> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) )  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) )
137136rspcv 3178 . . . . . . . . 9  |-  ( ( U. ran  f  u. 
ran  D )  e.  ( ~P C  i^i  Fin )  ->  ( A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) )
138125, 137syl 17 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( A. z  e.  ( ~P C  i^i  Fin ) ( ( f `
 j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) )  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) )  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) ) )
13911ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  G  e. CMnd )
140 cmnmnd 17433 . . . . . . . . . . . . 13  |-  ( G  e. CMnd  ->  G  e.  Mnd )
141139, 140syl 17 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  G  e.  Mnd )
142 simplr 760 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
j  e.  K )
143119adantlr 719 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( U. ran  f  u.  ran  D )  e. 
Fin )
144102adantlr 719 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( U. ran  f  u.  ran  D )  C_  C )
145144sselda 3464 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  k  e.  ( U. ran  f  u. 
ran  D ) )  ->  k  e.  C
)
14619adantr 466 . . . . . . . . . . . . . . . . . 18  |-  ( (
ph  /\  j  e.  K )  ->  F : ( A  X.  C ) --> B )
147146, 7jca 534 . . . . . . . . . . . . . . . . 17  |-  ( (
ph  /\  j  e.  K )  ->  ( F : ( A  X.  C ) --> B  /\  j  e.  A )
)
148203expa 1205 . . . . . . . . . . . . . . . . 17  |-  ( ( ( F : ( A  X.  C ) --> B  /\  j  e.  A )  /\  k  e.  C )  ->  (
j F k )  e.  B )
149147, 148sylan 473 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  j  e.  K )  /\  k  e.  C )  ->  (
j F k )  e.  B )
150149adantlr 719 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  k  e.  C )  ->  (
j F k )  e.  B )
151145, 150syldan 472 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  k  e.  ( U. ran  f  u. 
ran  D ) )  ->  ( j F k )  e.  B
)
152 eqid 2422 . . . . . . . . . . . . . 14  |-  ( k  e.  ( U. ran  f  u.  ran  D ) 
|->  ( j F k ) )  =  ( k  e.  ( U. ran  f  u.  ran  D )  |->  ( j F k ) )
153151, 152fmptd 6058 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) : ( U. ran  f  u.  ran  D ) --> B )
154 ovex 6330 . . . . . . . . . . . . . . 15  |-  ( j F k )  e. 
_V
155154a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  k  e.  ( U. ran  f  u. 
ran  D ) )  ->  ( j F k )  e.  _V )
156 fvex 5888 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  e. 
_V
15769, 156eqeltri 2506 . . . . . . . . . . . . . . 15  |-  .0.  e.  _V
158157a1i 11 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  .0.  e.  _V )
159152, 143, 155, 158fsuppmptdm 7897 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) finSupp  .0.  )
1608, 69, 139, 143, 153, 159gsumcl 17537 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) )  e.  B
)
161 elsn 4010 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  { j }  <-> 
y  =  j )
162 ovres 6447 . . . . . . . . . . . . . . . . 17  |-  ( ( y  e.  { j }  /\  k  e.  ( U. ran  f  u.  ran  D ) )  ->  ( y ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) k )  =  ( y F k ) )
163161, 162sylanbr 475 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  j  /\  k  e.  ( U. ran  f  u.  ran  D ) )  ->  (
y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k )  =  ( y F k ) )
164 oveq1 6309 . . . . . . . . . . . . . . . . 17  |-  ( y  =  j  ->  (
y F k )  =  ( j F k ) )
165164adantr 466 . . . . . . . . . . . . . . . 16  |-  ( ( y  =  j  /\  k  e.  ( U. ran  f  u.  ran  D ) )  ->  (
y F k )  =  ( j F k ) )
166163, 165eqtrd 2463 . . . . . . . . . . . . . . 15  |-  ( ( y  =  j  /\  k  e.  ( U. ran  f  u.  ran  D ) )  ->  (
y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k )  =  ( j F k ) )
167166mpteq2dva 4507 . . . . . . . . . . . . . 14  |-  ( y  =  j  ->  (
k  e.  ( U. ran  f  u.  ran  D )  |->  ( y ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) k ) )  =  ( k  e.  ( U. ran  f  u.  ran  D )  |->  ( j F k ) ) )
168167oveq2d 6318 . . . . . . . . . . . . 13  |-  ( y  =  j  ->  ( G  gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k ) ) )  =  ( G 
gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) ) )
1698, 168gsumsn 17575 . . . . . . . . . . . 12  |-  ( ( G  e.  Mnd  /\  j  e.  K  /\  ( G  gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) )  e.  B
)  ->  ( G  gsumg  ( y  e.  { j }  |->  ( G  gsumg  ( k  e.  ( U. ran  f  u.  ran  D ) 
|->  ( y ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) ) k ) ) ) ) )  =  ( G  gsumg  ( k  e.  ( U. ran  f  u.  ran  D ) 
|->  ( j F k ) ) ) )
170141, 142, 160, 169syl3anc 1264 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( y  e.  {
j }  |->  ( G 
gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k ) ) ) ) )  =  ( G  gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) ) )
171 snfi 7654 . . . . . . . . . . . . 13  |-  { j }  e.  Fin
172171a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  { j }  e.  Fin )
17319ad2antrr 730 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  F : ( A  X.  C ) --> B )
1747adantr 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
j  e.  A )
175174snssd 4142 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  { j }  C_  A )
176 xpss12 4956 . . . . . . . . . . . . . 14  |-  ( ( { j }  C_  A  /\  ( U. ran  f  u.  ran  D ) 
C_  C )  -> 
( { j }  X.  ( U. ran  f  u.  ran  D ) )  C_  ( A  X.  C ) )
177175, 144, 176syl2anc 665 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( { j }  X.  ( U. ran  f  u.  ran  D ) )  C_  ( A  X.  C ) )
178173, 177fssresd 5764 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) : ( { j }  X.  ( U. ran  f  u.  ran  D ) ) --> B )
179 xpfi 7845 . . . . . . . . . . . . . 14  |-  ( ( { j }  e.  Fin  /\  ( U. ran  f  u.  ran  D )  e.  Fin )  -> 
( { j }  X.  ( U. ran  f  u.  ran  D ) )  e.  Fin )
180171, 143, 179sylancr 667 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( { j }  X.  ( U. ran  f  u.  ran  D ) )  e.  Fin )
181178, 180, 158fdmfifsupp 7896 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) finSupp  .0.  )
1828, 69, 139, 172, 143, 178, 181gsumxp 17596 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( G  gsumg  ( y  e.  {
j }  |->  ( G 
gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( y ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) k ) ) ) ) ) )
183144resmptd 5172 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) )  =  ( k  e.  ( U. ran  f  u.  ran  D )  |->  ( j F k ) ) )
184183oveq2d 6318 . . . . . . . . . . 11  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) )  =  ( G 
gsumg  ( k  e.  ( U. ran  f  u. 
ran  D )  |->  ( j F k ) ) ) )
185170, 182, 1843eqtr4rd 2474 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u. 
ran  D ) ) )  =  ( G 
gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )
186185eleq1d 2491 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )  <->  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) )  e.  ran  ( g  e.  L  |->  ( ( H `  j ) 
.-  g ) ) ) )
187 ovex 6330 . . . . . . . . . . 11  |-  ( ( H `  j ) 
.-  g )  e. 
_V
18875, 187elrnmpti 5101 . . . . . . . . . 10  |-  ( ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  e.  ran  ( g  e.  L  |->  ( ( H `  j )  .-  g
) )  <->  E. g  e.  L  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) )  =  ( ( H `
 j )  .-  g ) )
189 isabl 17422 . . . . . . . . . . . . . . . 16  |-  ( G  e.  Abel  <->  ( G  e. 
Grp  /\  G  e. CMnd ) )
19045, 11, 189sylanbrc 668 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e.  Abel )
191190ad3antrrr 734 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  G  e.  Abel )
1927, 37syldan 472 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  j  e.  K )  ->  ( H `  j )  e.  B )
193192ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  ( H `  j )  e.  B )
19431ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  ->  L  C_  B )
195194sselda 3464 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  g  e.  B )
1968, 40, 191, 193, 195ablnncan 17451 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  (
( H `  j
)  .-  ( ( H `  j )  .-  g ) )  =  g )
197 simpr 462 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  g  e.  L )
198196, 197eqeltrd 2510 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  (
( H `  j
)  .-  ( ( H `  j )  .-  g ) )  e.  L )
199 oveq2 6310 . . . . . . . . . . . . 13  |-  ( ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( ( H `  j
)  .-  g )  ->  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  =  ( ( H `  j )  .-  (
( H `  j
)  .-  g )
) )
200199eleq1d 2491 . . . . . . . . . . . 12  |-  ( ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( ( H `  j
)  .-  g )  ->  ( ( ( H `
 j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L  <->  ( ( H `
 j )  .-  ( ( H `  j )  .-  g
) )  e.  L
) )
201198, 200syl5ibrcom 225 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin )
)  /\  g  e.  L )  ->  (
( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( ( H `  j
)  .-  g )  ->  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
202201rexlimdva 2917 . . . . . . . . . 10  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( E. g  e.  L  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) ) )  =  ( ( H `  j )  .-  g
)  ->  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
203188, 202syl5bi 220 . . . . . . . . 9  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )  -> 
( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
204186, 203sylbid 218 . . . . . . . 8  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  ( U. ran  f  u.  ran  D ) ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) )  -> 
( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
205138, 204syld 45 . . . . . . 7  |-  ( ( ( ph  /\  j  e.  K )  /\  f : K --> ( ~P C  i^i  Fin ) )  -> 
( A. z  e.  ( ~P C  i^i  Fin ) ( ( f `
 j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) )  ->  (
( H `  j
)  .-  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )  e.  L ) )
206205an32s 811 . . . . . 6  |-  ( ( ( ph  /\  f : K --> ( ~P C  i^i  Fin ) )  /\  j  e.  K )  ->  ( A. z  e.  ( ~P C  i^i  Fin ) ( ( f `
 j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z )
)  e.  ran  (
g  e.  L  |->  ( ( H `  j
)  .-  g )
) )  ->  (
( H `  j
)  .-  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )  e.  L ) )
207206ralimdva 2833 . . . . 5  |-  ( (
ph  /\  f : K
--> ( ~P C  i^i  Fin ) )  ->  ( A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin )
( ( f `  j )  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) )  ->  A. j  e.  K  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
208207impr 623 . . . 4  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  A. j  e.  K  ( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L )
209 fveq2 5878 . . . . . . 7  |-  ( j  =  x  ->  ( H `  j )  =  ( H `  x ) )
210 sneq 4006 . . . . . . . . . 10  |-  ( j  =  x  ->  { j }  =  { x } )
211210xpeq1d 4873 . . . . . . . . 9  |-  ( j  =  x  ->  ( { j }  X.  ( U. ran  f  u. 
ran  D ) )  =  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) )
212211reseq2d 5121 . . . . . . . 8  |-  ( j  =  x  ->  ( F  |`  ( { j }  X.  ( U. ran  f  u.  ran  D ) ) )  =  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) )
213212oveq2d 6318 . . . . . . 7  |-  ( j  =  x  ->  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) )  =  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )
214209, 213oveq12d 6320 . . . . . 6  |-  ( j  =  x  ->  (
( H `  j
)  .-  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )  =  ( ( H `  x ) 
.-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) ) ) ) )
215214eleq1d 2491 . . . . 5  |-  ( j  =  x  ->  (
( ( H `  j )  .-  ( G  gsumg  ( F  |`  ( { j }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L  <->  ( ( H `
 x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
216215cbvralv 3055 . . . 4  |-  ( A. j  e.  K  (
( H `  j
)  .-  ( G  gsumg  ( F  |`  ( {
j }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )  e.  L  <->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L )
217208, 216sylib 199 . . 3  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L )
218 sseq2 3486 . . . . 5  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( ran  D  C_  n  <->  ran  D  C_  ( U. ran  f  u.  ran  D ) ) )
219 xpeq2 4865 . . . . . . . . . 10  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( { x }  X.  n )  =  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) )
220219reseq2d 5121 . . . . . . . . 9  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( F  |`  ( { x }  X.  n ) )  =  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) )
221220oveq2d 6318 . . . . . . . 8  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) )  =  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) ) ) )
222221oveq2d 6318 . . . . . . 7  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( ( H `
 x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  =  ( ( H `  x ) 
.-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u.  ran  D ) ) ) ) ) )
223222eleq1d 2491 . . . . . 6  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( ( ( H `  x ) 
.-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L  <->  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
224223ralbidv 2864 . . . . 5  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L  <->  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )
225218, 224anbi12d 715 . . . 4  |-  ( n  =  ( U. ran  f  u.  ran  D )  ->  ( ( ran 
D  C_  n  /\  A. x  e.  K  ( ( H `  x
)  .-  ( G  gsumg  ( F  |`  ( {
x }  X.  n
) ) ) )  e.  L )  <->  ( ran  D 
C_  ( U. ran  f  u.  ran  D )  /\  A. x  e.  K  ( ( H `
 x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) ) )
226225rspcev 3182 . . 3  |-  ( ( ( U. ran  f  u.  ran  D )  e.  ( ~P C  i^i  Fin )  /\  ( ran 
D  C_  ( U. ran  f  u.  ran  D )  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  ( U. ran  f  u. 
ran  D ) ) ) ) )  e.  L ) )  ->  E. n  e.  ( ~P C  i^i  Fin )
( ran  D  C_  n  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L ) )
227122, 124, 217, 226syl12anc 1262 . 2  |-  ( (
ph  /\  ( f : K --> ( ~P C  i^i  Fin )  /\  A. j  e.  K  A. z  e.  ( ~P C  i^i  Fin ) ( ( f `  j
)  C_  z  ->  ( G  gsumg  ( ( k  e.  C  |->  ( j F k ) )  |`  z ) )  e. 
ran  ( g  e.  L  |->  ( ( H `
 j )  .-  g ) ) ) ) )  ->  E. n  e.  ( ~P C  i^i  Fin ) ( ran  D  C_  n  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L ) )
22887, 227exlimddv 1770 1  |-  ( ph  ->  E. n  e.  ( ~P C  i^i  Fin ) ( ran  D  C_  n  /\  A. x  e.  K  ( ( H `  x )  .-  ( G  gsumg  ( F  |`  ( { x }  X.  n ) ) ) )  e.  L ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437   E.wex 1659    e. wcel 1868   A.wral 2775   E.wrex 2776   _Vcvv 3081    u. cun 3434    i^i cin 3435    C_ wss 3436   ~Pcpw 3979   {csn 3996   U.cuni 4216    |-> cmpt 4479    X. cxp 4848   dom cdm 4850   ran crn 4851    |` cres 4852   "cima 4853    o. ccom 4854    Fn wfn 5593   -->wf 5594   -onto->wfo 5596   ` cfv 5598  (class class class)co 6302   Fincfn 7574   Basecbs 15109   +g cplusg 15178   TopOpenctopn 15308   0gc0g 15326    gsumg cgsu 15327   Mndcmnd 16523   Grpcgrp 16657   invgcminusg 16658   -gcsg 16659  CMndccmn 17418   Abelcabl 17419  TopOnctopon 19905   TopSpctps 19906   Homeochmeo 20755   TopGrpctgp 21073   tsums ctsu 21127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4552  ax-pow 4599  ax-pr 4657  ax-un 6594  ax-inf2 8149  ax-cnex 9596  ax-resscn 9597  ax-1cn 9598  ax-icn 9599  ax-addcl 9600  ax-addrcl 9601  ax-mulcl 9602  ax-mulrcl 9603  ax-mulcom 9604  ax-addass 9605  ax-mulass 9606  ax-distr 9607  ax-i2m1 9608  ax-1ne0 9609  ax-1rid 9610  ax-rnegex 9611  ax-rrecex 9612  ax-cnre 9613  ax-pre-lttri 9614  ax-pre-lttrn 9615  ax-pre-ltadd 9616  ax-pre-mulgt0 9617
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-iin 4299  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4761  df-id 4765  df-po 4771  df-so 4772  df-fr 4809  df-se 4810  df-we 4811  df-xp 4856  df-rel 4857  df-cnv 4858  df-co 4859  df-dm 4860  df-rn 4861  df-res 4862  df-ima 4863  df-pred 5396  df-ord 5442  df-on 5443  df-lim 5444  df-suc 5445  df-iota 5562  df-fun 5600  df-fn 5601  df-f 5602  df-f1 5603  df-fo 5604  df-f1o 5605  df-fv 5606  df-isom 5607  df-riota 6264  df-ov 6305  df-oprab 6306  df-mpt2 6307  df-of 6542  df-om 6704  df-1st 6804  df-2nd 6805  df-supp 6923  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-fsupp 7887  df-oi 8028  df-card 8375  df-pnf 9678  df-mnf 9679  df-xr 9680  df-ltxr 9681  df-le 9682  df-sub 9863  df-neg 9864  df-nn 10611  df-2 10669  df-n0 10871  df-z 10939  df-uz 11161  df-fz 11786  df-fzo 11917  df-seq 12214  df-hash 12516  df-ndx 15112  df-slot 15113  df-base 15114  df-sets 15115  df-ress 15116  df-plusg 15191  df-0g 15328  df-gsum 15329  df-topgen 15330  df-mre 15480  df-mrc 15481  df-acs 15483  df-plusf 16475  df-mgm 16476  df-sgrp 16515  df-mnd 16525  df-submnd 16571  df-grp 16661  df-minusg 16662  df-sbg 16663  df-mulg 16664  df-cntz 16959  df-cmn 17420  df-abl 17421  df-fbas 18955  df-fg 18956  df-top 19908  df-bases 19909  df-topon 19910  df-topsp 19911  df-ntr 20022  df-nei 20101  df-cn 20230  df-cnp 20231  df-tx 20564  df-hmeo 20757  df-fil 20848  df-fm 20940  df-flim 20941  df-flf 20942  df-tmd 21074  df-tgp 21075  df-tsms 21128
This theorem is referenced by:  tsmsxp  21156
  Copyright terms: Public domain W3C validator