MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsval2 Structured version   Unicode version

Theorem tsmsval2 19699
Description: Definition of the topological group sum(s) of a collection  F ( x ) of values in the group with index set  A. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsval.b  |-  B  =  ( Base `  G
)
tsmsval.j  |-  J  =  ( TopOpen `  G )
tsmsval.s  |-  S  =  ( ~P A  i^i  Fin )
tsmsval.l  |-  L  =  ran  ( z  e.  S  |->  { y  e.  S  |  z  C_  y } )
tsmsval.g  |-  ( ph  ->  G  e.  V )
tsmsval2.f  |-  ( ph  ->  F  e.  W )
tsmsval2.a  |-  ( ph  ->  dom  F  =  A )
Assertion
Ref Expression
tsmsval2  |-  ( ph  ->  ( G tsums  F )  =  ( ( J 
fLimf  ( S filGen L ) ) `  ( y  e.  S  |->  ( G 
gsumg  ( F  |`  y ) ) ) ) )
Distinct variable groups:    y, z, F    y, G, z    ph, y,
z    y, S
Allowed substitution hints:    A( y, z)    B( y, z)    S( z)    J( y, z)    L( y, z)    V( y, z)    W( y, z)

Proof of Theorem tsmsval2
Dummy variables  f 
s  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-tsms 19696 . . 3  |- tsums  =  ( w  e.  _V , 
f  e.  _V  |->  [_ ( ~P dom  f  i^i 
Fin )  /  s ]_ ( ( ( TopOpen `  w )  fLimf  ( s
filGen ran  ( z  e.  s  |->  { y  e.  s  |  z  C_  y } ) ) ) `
 ( y  e.  s  |->  ( w  gsumg  ( f  |`  y ) ) ) ) )
21a1i 11 . 2  |-  ( ph  -> tsums  =  ( w  e. 
_V ,  f  e. 
_V  |->  [_ ( ~P dom  f  i^i  Fin )  / 
s ]_ ( ( (
TopOpen `  w )  fLimf  ( s filGen ran  ( z  e.  s  |->  { y  e.  s  |  z 
C_  y } ) ) ) `  (
y  e.  s  |->  ( w  gsumg  ( f  |`  y
) ) ) ) ) )
3 vex 2974 . . . . . . 7  |-  f  e. 
_V
43dmex 6510 . . . . . 6  |-  dom  f  e.  _V
54pwex 4474 . . . . 5  |-  ~P dom  f  e.  _V
65inex1 4432 . . . 4  |-  ( ~P
dom  f  i^i  Fin )  e.  _V
76a1i 11 . . 3  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  -> 
( ~P dom  f  i^i  Fin )  e.  _V )
8 simplrl 759 . . . . . . 7  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  ->  w  =  G )
98fveq2d 5694 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( TopOpen `  w )  =  ( TopOpen `  G
) )
10 tsmsval.j . . . . . 6  |-  J  =  ( TopOpen `  G )
119, 10syl6eqr 2492 . . . . 5  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( TopOpen `  w )  =  J )
12 id 22 . . . . . . 7  |-  ( s  =  ( ~P dom  f  i^i  Fin )  -> 
s  =  ( ~P
dom  f  i^i  Fin ) )
13 simprr 756 . . . . . . . . . . . 12  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  -> 
f  =  F )
1413dmeqd 5041 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  ->  dom  f  =  dom  F )
15 tsmsval2.a . . . . . . . . . . . 12  |-  ( ph  ->  dom  F  =  A )
1615adantr 465 . . . . . . . . . . 11  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  ->  dom  F  =  A )
1714, 16eqtrd 2474 . . . . . . . . . 10  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  ->  dom  f  =  A
)
1817pweqd 3864 . . . . . . . . 9  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  ->  ~P dom  f  =  ~P A )
1918ineq1d 3550 . . . . . . . 8  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  -> 
( ~P dom  f  i^i  Fin )  =  ( ~P A  i^i  Fin ) )
20 tsmsval.s . . . . . . . 8  |-  S  =  ( ~P A  i^i  Fin )
2119, 20syl6eqr 2492 . . . . . . 7  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  -> 
( ~P dom  f  i^i  Fin )  =  S )
2212, 21sylan9eqr 2496 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
s  =  S )
23 rabeq 2965 . . . . . . . . . 10  |-  ( s  =  S  ->  { y  e.  s  |  z 
C_  y }  =  { y  e.  S  |  z  C_  y } )
2422, 23syl 16 . . . . . . . . 9  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  ->  { y  e.  s  |  z  C_  y }  =  { y  e.  S  |  z  C_  y } )
2522, 24mpteq12dv 4369 . . . . . . . 8  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( z  e.  s 
|->  { y  e.  s  |  z  C_  y } )  =  ( z  e.  S  |->  { y  e.  S  | 
z  C_  y }
) )
2625rneqd 5066 . . . . . . 7  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  ->  ran  ( z  e.  s 
|->  { y  e.  s  |  z  C_  y } )  =  ran  ( z  e.  S  |->  { y  e.  S  |  z  C_  y } ) )
27 tsmsval.l . . . . . . 7  |-  L  =  ran  ( z  e.  S  |->  { y  e.  S  |  z  C_  y } )
2826, 27syl6eqr 2492 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  ->  ran  ( z  e.  s 
|->  { y  e.  s  |  z  C_  y } )  =  L )
2922, 28oveq12d 6108 . . . . 5  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( s filGen ran  (
z  e.  s  |->  { y  e.  s  |  z  C_  y }
) )  =  ( S filGen L ) )
3011, 29oveq12d 6108 . . . 4  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( ( TopOpen `  w
)  fLimf  ( s filGen ran  ( z  e.  s 
|->  { y  e.  s  |  z  C_  y } ) ) )  =  ( J  fLimf  ( S filGen L ) ) )
31 simplrr 760 . . . . . . 7  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
f  =  F )
3231reseq1d 5108 . . . . . 6  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( f  |`  y
)  =  ( F  |`  y ) )
338, 32oveq12d 6108 . . . . 5  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( w  gsumg  ( f  |`  y
) )  =  ( G  gsumg  ( F  |`  y
) ) )
3422, 33mpteq12dv 4369 . . . 4  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( y  e.  s 
|->  ( w  gsumg  ( f  |`  y
) ) )  =  ( y  e.  S  |->  ( G  gsumg  ( F  |`  y
) ) ) )
3530, 34fveq12d 5696 . . 3  |-  ( ( ( ph  /\  (
w  =  G  /\  f  =  F )
)  /\  s  =  ( ~P dom  f  i^i 
Fin ) )  -> 
( ( ( TopOpen `  w )  fLimf  ( s
filGen ran  ( z  e.  s  |->  { y  e.  s  |  z  C_  y } ) ) ) `
 ( y  e.  s  |->  ( w  gsumg  ( f  |`  y ) ) ) )  =  ( ( J  fLimf  ( S filGen L ) ) `  ( y  e.  S  |->  ( G  gsumg  ( F  |`  y
) ) ) ) )
367, 35csbied 3313 . 2  |-  ( (
ph  /\  ( w  =  G  /\  f  =  F ) )  ->  [_ ( ~P dom  f  i^i  Fin )  /  s ]_ ( ( ( TopOpen `  w )  fLimf  ( s
filGen ran  ( z  e.  s  |->  { y  e.  s  |  z  C_  y } ) ) ) `
 ( y  e.  s  |->  ( w  gsumg  ( f  |`  y ) ) ) )  =  ( ( J  fLimf  ( S filGen L ) ) `  ( y  e.  S  |->  ( G  gsumg  ( F  |`  y
) ) ) ) )
37 tsmsval.g . . 3  |-  ( ph  ->  G  e.  V )
38 elex 2980 . . 3  |-  ( G  e.  V  ->  G  e.  _V )
3937, 38syl 16 . 2  |-  ( ph  ->  G  e.  _V )
40 tsmsval2.f . . 3  |-  ( ph  ->  F  e.  W )
41 elex 2980 . . 3  |-  ( F  e.  W  ->  F  e.  _V )
4240, 41syl 16 . 2  |-  ( ph  ->  F  e.  _V )
43 fvex 5700 . . 3  |-  ( ( J  fLimf  ( S filGen L ) ) `  ( y  e.  S  |->  ( G  gsumg  ( F  |`  y
) ) ) )  e.  _V
4443a1i 11 . 2  |-  ( ph  ->  ( ( J  fLimf  ( S filGen L ) ) `
 ( y  e.  S  |->  ( G  gsumg  ( F  |`  y ) ) ) )  e.  _V )
452, 36, 39, 42, 44ovmpt2d 6217 1  |-  ( ph  ->  ( G tsums  F )  =  ( ( J 
fLimf  ( S filGen L ) ) `  ( y  e.  S  |->  ( G 
gsumg  ( F  |`  y ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756   {crab 2718   _Vcvv 2971   [_csb 3287    i^i cin 3326    C_ wss 3327   ~Pcpw 3859    e. cmpt 4349   dom cdm 4839   ran crn 4840    |` cres 4841   ` cfv 5417  (class class class)co 6090    e. cmpt2 6092   Fincfn 7309   Basecbs 14173   TopOpenctopn 14359    gsumg cgsu 14378   filGencfg 17804    fLimf cflf 19507   tsums ctsu 19695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4412  ax-nul 4420  ax-pow 4469  ax-pr 4530  ax-un 6371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ne 2607  df-ral 2719  df-rex 2720  df-rab 2723  df-v 2973  df-sbc 3186  df-csb 3288  df-dif 3330  df-un 3332  df-in 3334  df-ss 3341  df-nul 3637  df-if 3791  df-pw 3861  df-sn 3877  df-pr 3879  df-op 3883  df-uni 4091  df-br 4292  df-opab 4350  df-mpt 4351  df-id 4635  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-iota 5380  df-fun 5419  df-fv 5425  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-tsms 19696
This theorem is referenced by:  tsmsval  19700  tsmspropd  19701
  Copyright terms: Public domain W3C validator