MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmssplit Structured version   Unicode version

Theorem tsmssplit 20823
Description: Split a topological group sum into two parts. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmssplit.b  |-  B  =  ( Base `  G
)
tsmssplit.p  |-  .+  =  ( +g  `  G )
tsmssplit.1  |-  ( ph  ->  G  e. CMnd )
tsmssplit.2  |-  ( ph  ->  G  e. TopMnd )
tsmssplit.a  |-  ( ph  ->  A  e.  V )
tsmssplit.f  |-  ( ph  ->  F : A --> B )
tsmssplit.x  |-  ( ph  ->  X  e.  ( G tsums 
( F  |`  C ) ) )
tsmssplit.y  |-  ( ph  ->  Y  e.  ( G tsums 
( F  |`  D ) ) )
tsmssplit.i  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
tsmssplit.u  |-  ( ph  ->  A  =  ( C  u.  D ) )
Assertion
Ref Expression
tsmssplit  |-  ( ph  ->  ( X  .+  Y
)  e.  ( G tsums 
F ) )

Proof of Theorem tsmssplit
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 tsmssplit.b . . 3  |-  B  =  ( Base `  G
)
2 tsmssplit.p . . 3  |-  .+  =  ( +g  `  G )
3 tsmssplit.1 . . 3  |-  ( ph  ->  G  e. CMnd )
4 tsmssplit.2 . . 3  |-  ( ph  ->  G  e. TopMnd )
5 tsmssplit.a . . 3  |-  ( ph  ->  A  e.  V )
6 tsmssplit.f . . . . . 6  |-  ( ph  ->  F : A --> B )
76ffvelrnda 6007 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( F `  k )  e.  B )
8 cmnmnd 17015 . . . . . . . 8  |-  ( G  e. CMnd  ->  G  e.  Mnd )
93, 8syl 16 . . . . . . 7  |-  ( ph  ->  G  e.  Mnd )
10 eqid 2454 . . . . . . . 8  |-  ( 0g
`  G )  =  ( 0g `  G
)
111, 10mndidcl 16140 . . . . . . 7  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
129, 11syl 16 . . . . . 6  |-  ( ph  ->  ( 0g `  G
)  e.  B )
1312adantr 463 . . . . 5  |-  ( (
ph  /\  k  e.  A )  ->  ( 0g `  G )  e.  B )
147, 13ifcld 3972 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  e.  B )
15 eqid 2454 . . . 4  |-  ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  ( 0g
`  G ) ) )
1614, 15fmptd 6031 . . 3  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  ( 0g `  G
) ) ) : A --> B )
177, 13ifcld 3972 . . . 4  |-  ( (
ph  /\  k  e.  A )  ->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) )  e.  B )
18 eqid 2454 . . . 4  |-  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )
1917, 18fmptd 6031 . . 3  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  ( 0g `  G
) ) ) : A --> B )
20 tsmssplit.x . . . 4  |-  ( ph  ->  X  e.  ( G tsums 
( F  |`  C ) ) )
216feqmptd 5901 . . . . . . . 8  |-  ( ph  ->  F  =  ( k  e.  A  |->  ( F `
 k ) ) )
2221reseq1d 5261 . . . . . . 7  |-  ( ph  ->  ( F  |`  C )  =  ( ( k  e.  A  |->  ( F `
 k ) )  |`  C ) )
23 ssun1 3653 . . . . . . . . 9  |-  C  C_  ( C  u.  D
)
24 tsmssplit.u . . . . . . . . 9  |-  ( ph  ->  A  =  ( C  u.  D ) )
2523, 24syl5sseqr 3538 . . . . . . . 8  |-  ( ph  ->  C  C_  A )
26 iftrue 3935 . . . . . . . . . 10  |-  ( k  e.  C  ->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  =  ( F `
 k ) )
2726mpteq2ia 4521 . . . . . . . . 9  |-  ( k  e.  C  |->  if ( k  e.  C , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( k  e.  C  |->  ( F `
 k ) )
28 resmpt 5311 . . . . . . . . 9  |-  ( C 
C_  A  ->  (
( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  ( 0g `  G
) ) )  |`  C )  =  ( k  e.  C  |->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) ) ) )
29 resmpt 5311 . . . . . . . . 9  |-  ( C 
C_  A  ->  (
( k  e.  A  |->  ( F `  k
) )  |`  C )  =  ( k  e.  C  |->  ( F `  k ) ) )
3027, 28, 293eqtr4a 2521 . . . . . . . 8  |-  ( C 
C_  A  ->  (
( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  ( 0g `  G
) ) )  |`  C )  =  ( ( k  e.  A  |->  ( F `  k
) )  |`  C ) )
3125, 30syl 16 . . . . . . 7  |-  ( ph  ->  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) ) )  |`  C )  =  ( ( k  e.  A  |->  ( F `  k
) )  |`  C ) )
3222, 31eqtr4d 2498 . . . . . 6  |-  ( ph  ->  ( F  |`  C )  =  ( ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  ( 0g
`  G ) ) )  |`  C )
)
3332oveq2d 6286 . . . . 5  |-  ( ph  ->  ( G tsums  ( F  |`  C ) )  =  ( G tsums  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) ) )  |`  C ) ) )
34 tmdtps 20744 . . . . . . 7  |-  ( G  e. TopMnd  ->  G  e.  TopSp )
354, 34syl 16 . . . . . 6  |-  ( ph  ->  G  e.  TopSp )
36 eldifn 3613 . . . . . . . . 9  |-  ( k  e.  ( A  \  C )  ->  -.  k  e.  C )
3736adantl 464 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( A  \  C ) )  ->  -.  k  e.  C )
3837iffalsed 3940 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  \  C ) )  ->  if (
k  e.  C , 
( F `  k
) ,  ( 0g
`  G ) )  =  ( 0g `  G ) )
3938, 5suppss2 6926 . . . . . 6  |-  ( ph  ->  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) ) ) supp  ( 0g `  G
) )  C_  C
)
401, 10, 3, 35, 5, 16, 39tsmsres 20815 . . . . 5  |-  ( ph  ->  ( G tsums  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) ) )  |`  C ) )  =  ( G tsums 
( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  ( 0g `  G
) ) ) ) )
4133, 40eqtrd 2495 . . . 4  |-  ( ph  ->  ( G tsums  ( F  |`  C ) )  =  ( G tsums  ( k  e.  A  |->  if ( k  e.  C , 
( F `  k
) ,  ( 0g
`  G ) ) ) ) )
4220, 41eleqtrd 2544 . . 3  |-  ( ph  ->  X  e.  ( G tsums 
( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  ( 0g `  G
) ) ) ) )
43 tsmssplit.y . . . 4  |-  ( ph  ->  Y  e.  ( G tsums 
( F  |`  D ) ) )
4421reseq1d 5261 . . . . . . 7  |-  ( ph  ->  ( F  |`  D )  =  ( ( k  e.  A  |->  ( F `
 k ) )  |`  D ) )
45 ssun2 3654 . . . . . . . . 9  |-  D  C_  ( C  u.  D
)
4645, 24syl5sseqr 3538 . . . . . . . 8  |-  ( ph  ->  D  C_  A )
47 iftrue 3935 . . . . . . . . . 10  |-  ( k  e.  D  ->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) )  =  ( F `
 k ) )
4847mpteq2ia 4521 . . . . . . . . 9  |-  ( k  e.  D  |->  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( k  e.  D  |->  ( F `
 k ) )
49 resmpt 5311 . . . . . . . . 9  |-  ( D 
C_  A  ->  (
( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  ( 0g `  G
) ) )  |`  D )  =  ( k  e.  D  |->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) ) )
50 resmpt 5311 . . . . . . . . 9  |-  ( D 
C_  A  ->  (
( k  e.  A  |->  ( F `  k
) )  |`  D )  =  ( k  e.  D  |->  ( F `  k ) ) )
5148, 49, 503eqtr4a 2521 . . . . . . . 8  |-  ( D 
C_  A  ->  (
( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  ( 0g `  G
) ) )  |`  D )  =  ( ( k  e.  A  |->  ( F `  k
) )  |`  D ) )
5246, 51syl 16 . . . . . . 7  |-  ( ph  ->  ( ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) )  |`  D )  =  ( ( k  e.  A  |->  ( F `  k
) )  |`  D ) )
5344, 52eqtr4d 2498 . . . . . 6  |-  ( ph  ->  ( F  |`  D )  =  ( ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )  |`  D )
)
5453oveq2d 6286 . . . . 5  |-  ( ph  ->  ( G tsums  ( F  |`  D ) )  =  ( G tsums  ( ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) )  |`  D ) ) )
55 eldifn 3613 . . . . . . . . 9  |-  ( k  e.  ( A  \  D )  ->  -.  k  e.  D )
5655adantl 464 . . . . . . . 8  |-  ( (
ph  /\  k  e.  ( A  \  D ) )  ->  -.  k  e.  D )
5756iffalsed 3940 . . . . . . 7  |-  ( (
ph  /\  k  e.  ( A  \  D ) )  ->  if (
k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) )  =  ( 0g `  G ) )
5857, 5suppss2 6926 . . . . . 6  |-  ( ph  ->  ( ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) ) supp  ( 0g `  G
) )  C_  D
)
591, 10, 3, 35, 5, 19, 58tsmsres 20815 . . . . 5  |-  ( ph  ->  ( G tsums  ( ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) )  |`  D ) )  =  ( G tsums 
( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  ( 0g `  G
) ) ) ) )
6054, 59eqtrd 2495 . . . 4  |-  ( ph  ->  ( G tsums  ( F  |`  D ) )  =  ( G tsums  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) ) ) )
6143, 60eleqtrd 2544 . . 3  |-  ( ph  ->  Y  e.  ( G tsums 
( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  ( 0g `  G
) ) ) ) )
621, 2, 3, 4, 5, 16, 19, 42, 61tsmsadd 20818 . 2  |-  ( ph  ->  ( X  .+  Y
)  e.  ( G tsums 
( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) ) )  oF  .+  (
k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) ) ) ) )
6326adantl 464 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  =  ( F `
 k ) )
64 tsmssplit.i . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( C  i^i  D
)  =  (/) )
65 noel 3787 . . . . . . . . . . . . . . . 16  |-  -.  k  e.  (/)
66 eleq2 2527 . . . . . . . . . . . . . . . 16  |-  ( ( C  i^i  D )  =  (/)  ->  ( k  e.  ( C  i^i  D )  <->  k  e.  (/) ) )
6765, 66mtbiri 301 . . . . . . . . . . . . . . 15  |-  ( ( C  i^i  D )  =  (/)  ->  -.  k  e.  ( C  i^i  D
) )
6864, 67syl 16 . . . . . . . . . . . . . 14  |-  ( ph  ->  -.  k  e.  ( C  i^i  D ) )
6968adantr 463 . . . . . . . . . . . . 13  |-  ( (
ph  /\  k  e.  A )  ->  -.  k  e.  ( C  i^i  D ) )
70 elin 3673 . . . . . . . . . . . . 13  |-  ( k  e.  ( C  i^i  D )  <->  ( k  e.  C  /\  k  e.  D ) )
7169, 70sylnib 302 . . . . . . . . . . . 12  |-  ( (
ph  /\  k  e.  A )  ->  -.  ( k  e.  C  /\  k  e.  D
) )
72 imnan 420 . . . . . . . . . . . 12  |-  ( ( k  e.  C  ->  -.  k  e.  D
)  <->  -.  ( k  e.  C  /\  k  e.  D ) )
7371, 72sylibr 212 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
k  e.  C  ->  -.  k  e.  D
) )
7473imp 427 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  -.  k  e.  D )
7574iffalsed 3940 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) )  =  ( 0g
`  G ) )
7663, 75oveq12d 6288 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  .+  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( ( F `  k ) 
.+  ( 0g `  G ) ) )
771, 2, 10mndrid 16144 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( F `  k )  e.  B )  -> 
( ( F `  k )  .+  ( 0g `  G ) )  =  ( F `  k ) )
789, 77sylan 469 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  k )  e.  B
)  ->  ( ( F `  k )  .+  ( 0g `  G
) )  =  ( F `  k ) )
797, 78syldan 468 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  (
( F `  k
)  .+  ( 0g `  G ) )  =  ( F `  k
) )
8079adantr 463 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  (
( F `  k
)  .+  ( 0g `  G ) )  =  ( F `  k
) )
8176, 80eqtrd 2495 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  C )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  .+  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( F `
 k ) )
8273con2d 115 . . . . . . . . . . 11  |-  ( (
ph  /\  k  e.  A )  ->  (
k  e.  D  ->  -.  k  e.  C
) )
8382imp 427 . . . . . . . . . 10  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  -.  k  e.  C )
8483iffalsed 3940 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  =  ( 0g
`  G ) )
8547adantl 464 . . . . . . . . 9  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) )  =  ( F `
 k ) )
8684, 85oveq12d 6288 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  .+  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( ( 0g `  G ) 
.+  ( F `  k ) ) )
871, 2, 10mndlid 16143 . . . . . . . . . . 11  |-  ( ( G  e.  Mnd  /\  ( F `  k )  e.  B )  -> 
( ( 0g `  G )  .+  ( F `  k )
)  =  ( F `
 k ) )
889, 87sylan 469 . . . . . . . . . 10  |-  ( (
ph  /\  ( F `  k )  e.  B
)  ->  ( ( 0g `  G )  .+  ( F `  k ) )  =  ( F `
 k ) )
897, 88syldan 468 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  (
( 0g `  G
)  .+  ( F `  k ) )  =  ( F `  k
) )
9089adantr 463 . . . . . . . 8  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  (
( 0g `  G
)  .+  ( F `  k ) )  =  ( F `  k
) )
9186, 90eqtrd 2495 . . . . . . 7  |-  ( ( ( ph  /\  k  e.  A )  /\  k  e.  D )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  .+  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( F `
 k ) )
9224eleq2d 2524 . . . . . . . . 9  |-  ( ph  ->  ( k  e.  A  <->  k  e.  ( C  u.  D ) ) )
93 elun 3631 . . . . . . . . 9  |-  ( k  e.  ( C  u.  D )  <->  ( k  e.  C  \/  k  e.  D ) )
9492, 93syl6bb 261 . . . . . . . 8  |-  ( ph  ->  ( k  e.  A  <->  ( k  e.  C  \/  k  e.  D )
) )
9594biimpa 482 . . . . . . 7  |-  ( (
ph  /\  k  e.  A )  ->  (
k  e.  C  \/  k  e.  D )
)
9681, 91, 95mpjaodan 784 . . . . . 6  |-  ( (
ph  /\  k  e.  A )  ->  ( if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  .+  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) )  =  ( F `
 k ) )
9796mpteq2dva 4525 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  ( if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  .+  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) ) )  =  ( k  e.  A  |->  ( F `  k
) ) )
9821, 97eqtr4d 2498 . . . 4  |-  ( ph  ->  F  =  ( k  e.  A  |->  ( if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  .+  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) ) ) )
99 eqidd 2455 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  ( 0g `  G
) ) )  =  ( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  ( 0g `  G
) ) ) )
100 eqidd 2455 . . . . 5  |-  ( ph  ->  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  ( 0g `  G
) ) )  =  ( k  e.  A  |->  if ( k  e.  D ,  ( F `
 k ) ,  ( 0g `  G
) ) ) )
1015, 14, 17, 99, 100offval2 6529 . . . 4  |-  ( ph  ->  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) ) )  oF  .+  (
k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) ) )  =  ( k  e.  A  |->  ( if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) )  .+  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) ) ) )
10298, 101eqtr4d 2498 . . 3  |-  ( ph  ->  F  =  ( ( k  e.  A  |->  if ( k  e.  C ,  ( F `  k ) ,  ( 0g `  G ) ) )  oF  .+  ( k  e.  A  |->  if ( k  e.  D ,  ( F `  k ) ,  ( 0g `  G ) ) ) ) )
103102oveq2d 6286 . 2  |-  ( ph  ->  ( G tsums  F )  =  ( G tsums  (
( k  e.  A  |->  if ( k  e.  C ,  ( F `
 k ) ,  ( 0g `  G
) ) )  oF  .+  ( k  e.  A  |->  if ( k  e.  D , 
( F `  k
) ,  ( 0g
`  G ) ) ) ) ) )
10462, 103eleqtrrd 2545 1  |-  ( ph  ->  ( X  .+  Y
)  e.  ( G tsums 
F ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 366    /\ wa 367    = wceq 1398    e. wcel 1823    \ cdif 3458    u. cun 3459    i^i cin 3460    C_ wss 3461   (/)c0 3783   ifcif 3929    |-> cmpt 4497    |` cres 4990   -->wf 5566   ` cfv 5570  (class class class)co 6270    oFcof 6511   Basecbs 14719   +g cplusg 14787   0gc0g 14932   Mndcmnd 16121  CMndccmn 17000   TopSpctps 19567  TopMndctmd 20738   tsums ctsu 20793
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-of 6513  df-om 6674  df-1st 6773  df-2nd 6774  df-supp 6892  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-er 7303  df-map 7414  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fsupp 7822  df-oi 7927  df-card 8311  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-nn 10532  df-2 10590  df-n0 10792  df-z 10861  df-uz 11083  df-fz 11676  df-fzo 11800  df-seq 12093  df-hash 12391  df-ndx 14722  df-slot 14723  df-base 14724  df-sets 14725  df-ress 14726  df-plusg 14800  df-0g 14934  df-gsum 14935  df-topgen 14936  df-plusf 16073  df-mgm 16074  df-sgrp 16113  df-mnd 16123  df-submnd 16169  df-cntz 16557  df-cmn 17002  df-fbas 18614  df-fg 18615  df-top 19569  df-bases 19571  df-topon 19572  df-topsp 19573  df-ntr 19691  df-nei 19769  df-cn 19898  df-cnp 19899  df-tx 20232  df-fil 20516  df-fm 20608  df-flim 20609  df-flf 20610  df-tmd 20740  df-tsms 20794
This theorem is referenced by:  esumsplit  28285
  Copyright terms: Public domain W3C validator