MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsresOLD Structured version   Unicode version

Theorem tsmsresOLD 20935
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) Obsolete version of tsmsres 20936 as of 25-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
tsmsres.b  |-  B  =  ( Base `  G
)
tsmsres.z  |-  .0.  =  ( 0g `  G )
tsmsres.1  |-  ( ph  ->  G  e. CMnd )
tsmsres.2  |-  ( ph  ->  G  e.  TopSp )
tsmsres.a  |-  ( ph  ->  A  e.  V )
tsmsres.f  |-  ( ph  ->  F : A --> B )
tsmsresOLD.s  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  W )
Assertion
Ref Expression
tsmsresOLD  |-  ( ph  ->  ( G tsums  ( F  |`  W ) )  =  ( G tsums  F ) )

Proof of Theorem tsmsresOLD
Dummy variables  a 
b  u  y  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3658 . . . . . . . . . . . 12  |-  ( A  i^i  W )  C_  A
2 sspwb 4639 . . . . . . . . . . . 12  |-  ( ( A  i^i  W ) 
C_  A  <->  ~P ( A  i^i  W )  C_  ~P A )
31, 2mpbi 208 . . . . . . . . . . 11  |-  ~P ( A  i^i  W )  C_  ~P A
4 ssrin 3663 . . . . . . . . . . 11  |-  ( ~P ( A  i^i  W
)  C_  ~P A  ->  ( ~P ( A  i^i  W )  i^i 
Fin )  C_  ( ~P A  i^i  Fin )
)
53, 4ax-mp 5 . . . . . . . . . 10  |-  ( ~P ( A  i^i  W
)  i^i  Fin )  C_  ( ~P A  i^i  Fin )
6 simpr 459 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)
75, 6sseldi 3439 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  a  e.  ( ~P A  i^i  Fin ) )
8 elfpw 7855 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ~P A  i^i  Fin )  <->  ( z  C_  A  /\  z  e. 
Fin ) )
98simplbi 458 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  C_  A )
109adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  C_  A
)
11 ssrin 3663 . . . . . . . . . . . . . 14  |-  ( z 
C_  A  ->  (
z  i^i  W )  C_  ( A  i^i  W
) )
1210, 11syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  C_  ( A  i^i  W ) )
138simprbi 462 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  e.  Fin )
1413adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  e.  Fin )
15 inss1 3658 . . . . . . . . . . . . . 14  |-  ( z  i^i  W )  C_  z
16 ssfi 7774 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Fin  /\  ( z  i^i  W
)  C_  z )  ->  ( z  i^i  W
)  e.  Fin )
1714, 15, 16sylancl 660 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  e.  Fin )
18 elfpw 7855 . . . . . . . . . . . . 13  |-  ( ( z  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( (
z  i^i  W )  C_  ( A  i^i  W
)  /\  ( z  i^i  W )  e.  Fin ) )
1912, 17, 18sylanbrc 662 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)
20 sseq2 3463 . . . . . . . . . . . . . . 15  |-  ( b  =  ( z  i^i 
W )  ->  (
a  C_  b  <->  a  C_  ( z  i^i  W
) ) )
21 ssin 3660 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  z  /\  a  C_  W )  <->  a  C_  ( z  i^i  W
) )
2220, 21syl6bbr 263 . . . . . . . . . . . . . 14  |-  ( b  =  ( z  i^i 
W )  ->  (
a  C_  b  <->  ( a  C_  z  /\  a  C_  W ) ) )
23 reseq2 5088 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( z  i^i 
W )  ->  (
( F  |`  W )  |`  b )  =  ( ( F  |`  W )  |`  ( z  i^i  W
) ) )
24 inss2 3659 . . . . . . . . . . . . . . . . . 18  |-  ( z  i^i  W )  C_  W
25 resabs1 5121 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  i^i  W ) 
C_  W  ->  (
( F  |`  W )  |`  ( z  i^i  W
) )  =  ( F  |`  ( z  i^i  W ) ) )
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  W )  |`  ( z  i^i  W
) )  =  ( F  |`  ( z  i^i  W ) )
2723, 26syl6eq 2459 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( z  i^i 
W )  ->  (
( F  |`  W )  |`  b )  =  ( F  |`  ( z  i^i  W ) ) )
2827oveq2d 6293 . . . . . . . . . . . . . . 15  |-  ( b  =  ( z  i^i 
W )  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  =  ( G  gsumg  ( F  |`  (
z  i^i  W )
) ) )
2928eleq1d 2471 . . . . . . . . . . . . . 14  |-  ( b  =  ( z  i^i 
W )  ->  (
( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u  <->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) )
3022, 29imbi12d 318 . . . . . . . . . . . . 13  |-  ( b  =  ( z  i^i 
W )  ->  (
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  ( ( a 
C_  z  /\  a  C_  W )  ->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
3130rspcv 3155 . . . . . . . . . . . 12  |-  ( ( z  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  ( A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( (
a  C_  z  /\  a  C_  W )  -> 
( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
3219, 31syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( (
a  C_  z  /\  a  C_  W )  -> 
( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
33 elfpw 7855 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( a  C_  ( A  i^i  W
)  /\  a  e.  Fin ) )
3433simplbi 458 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  a  C_  ( A  i^i  W
) )
3534ad2antlr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  ( A  i^i  W ) )
36 inss2 3659 . . . . . . . . . . . . . 14  |-  ( A  i^i  W )  C_  W
3735, 36syl6ss 3453 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  W
)
3837biantrud 505 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( a  C_  z 
<->  ( a  C_  z  /\  a  C_  W ) ) )
39 resres 5105 . . . . . . . . . . . . . . 15  |-  ( ( F  |`  z )  |`  W )  =  ( F  |`  ( z  i^i  W ) )
4039oveq2i 6288 . . . . . . . . . . . . . 14  |-  ( G 
gsumg  ( ( F  |`  z )  |`  W ) )  =  ( G 
gsumg  ( F  |`  ( z  i^i  W ) ) )
41 tsmsres.b . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  G
)
42 tsmsres.z . . . . . . . . . . . . . . 15  |-  .0.  =  ( 0g `  G )
43 tsmsres.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e. CMnd )
4443ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
45 tsmsres.f . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : A --> B )
4645ad2antrr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  F : A --> B )
47 fssres 5733 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> B  /\  z  C_  A )  -> 
( F  |`  z
) : z --> B )
4846, 10, 47syl2anc 659 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  z ) : z --> B )
49 resss 5116 . . . . . . . . . . . . . . . . 17  |-  ( F  |`  z )  C_  F
50 cnvss 4995 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  z )  C_  F  ->  `' ( F  |`  z )  C_  `' F )
51 imass1 5190 . . . . . . . . . . . . . . . . 17  |-  ( `' ( F  |`  z
)  C_  `' F  ->  ( `' ( F  |`  z ) " ( _V  \  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
5249, 50, 51mp2b 10 . . . . . . . . . . . . . . . 16  |-  ( `' ( F  |`  z
) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
53 tsmsresOLD.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  W )
5453ad2antrr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  W )
5552, 54syl5ss 3452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( F  |`  z ) " ( _V  \  {  .0.  } ) ) 
C_  W )
5614, 48fisuppfi 7870 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( F  |`  z ) " ( _V  \  {  .0.  } ) )  e.  Fin )
5741, 42, 44, 14, 48, 55, 56gsumresOLD 17247 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( ( F  |`  z )  |`  W ) )  =  ( G  gsumg  ( F  |`  z
) ) )
5840, 57syl5reqr 2458 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  z ) )  =  ( G  gsumg  ( F  |`  (
z  i^i  W )
) ) )
5958eleq1d 2471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( G 
gsumg  ( F  |`  z ) )  e.  u  <->  ( G  gsumg  ( F  |`  ( z  i^i  W ) ) )  e.  u ) )
6038, 59imbi12d 318 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( a 
C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( ( a 
C_  z  /\  a  C_  W )  ->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
6132, 60sylibrd 234 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( a  C_  z  ->  ( G  gsumg  ( F  |`  z )
)  e.  u ) ) )
6261ralrimdva 2821 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
63 sseq1 3462 . . . . . . . . . . . 12  |-  ( y  =  a  ->  (
y  C_  z  <->  a  C_  z ) )
6463imbi1d 315 . . . . . . . . . . 11  |-  ( y  =  a  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
6564ralbidv 2842 . . . . . . . . . 10  |-  ( y  =  a  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
6665rspcev 3159 . . . . . . . . 9  |-  ( ( a  e.  ( ~P A  i^i  Fin )  /\  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) )
677, 62, 66syl6an 543 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
6867rexlimdva 2895 . . . . . . 7  |-  ( ph  ->  ( E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
69 elfpw 7855 . . . . . . . . . . . . 13  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
7069simplbi 458 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
7170adantl 464 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  C_  A )
72 ssrin 3663 . . . . . . . . . . 11  |-  ( y 
C_  A  ->  (
y  i^i  W )  C_  ( A  i^i  W
) )
7371, 72syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  C_  ( A  i^i  W
) )
7469simprbi 462 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
7574adantl 464 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
76 inss1 3658 . . . . . . . . . . 11  |-  ( y  i^i  W )  C_  y
77 ssfi 7774 . . . . . . . . . . 11  |-  ( ( y  e.  Fin  /\  ( y  i^i  W
)  C_  y )  ->  ( y  i^i  W
)  e.  Fin )
7875, 76, 77sylancl 660 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  e.  Fin )
79 elfpw 7855 . . . . . . . . . 10  |-  ( ( y  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( (
y  i^i  W )  C_  ( A  i^i  W
)  /\  ( y  i^i  W )  e.  Fin ) )
8073, 78, 79sylanbrc 662 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )
8170ad2antlr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
y  C_  A )
82 elfpw 7855 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( b  C_  ( A  i^i  W
)  /\  b  e.  Fin ) )
8382simplbi 458 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  b  C_  ( A  i^i  W
) )
8483adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  ( A  i^i  W ) )
8584, 1syl6ss 3453 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  A )
8681, 85unssd 3618 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  C_  A )
8782simprbi 462 . . . . . . . . . . . . . 14  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  b  e.  Fin )
88 unfi 7820 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Fin  /\  b  e.  Fin )  ->  ( y  u.  b
)  e.  Fin )
8975, 87, 88syl2an 475 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  e.  Fin )
90 elfpw 7855 . . . . . . . . . . . . 13  |-  ( ( y  u.  b )  e.  ( ~P A  i^i  Fin )  <->  ( (
y  u.  b ) 
C_  A  /\  (
y  u.  b )  e.  Fin ) )
9186, 89, 90sylanbrc 662 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  e.  ( ~P A  i^i  Fin )
)
92 ssun1 3605 . . . . . . . . . . . . . . . 16  |-  y  C_  ( y  u.  b
)
93 id 22 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  b )  ->  z  =  ( y  u.  b ) )
9492, 93syl5sseqr 3490 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  b )  ->  y  C_  z )
95 pm5.5 334 . . . . . . . . . . . . . . 15  |-  ( y 
C_  z  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
9694, 95syl 17 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  b )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
97 reseq2 5088 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  b )  ->  ( F  |`  z )  =  ( F  |`  (
y  u.  b ) ) )
9897oveq2d 6293 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  b )  ->  ( G  gsumg  ( F  |`  z
) )  =  ( G  gsumg  ( F  |`  (
y  u.  b ) ) ) )
9998eleq1d 2471 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  b )  ->  (
( G  gsumg  ( F  |`  z
) )  e.  u  <->  ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u
) )
10096, 99bitrd 253 . . . . . . . . . . . . 13  |-  ( z  =  ( y  u.  b )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u ) )
101100rspcv 3155 . . . . . . . . . . . 12  |-  ( ( y  u.  b )  e.  ( ~P A  i^i  Fin )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  ( G  gsumg  ( F  |`  ( y  u.  b ) ) )  e.  u ) )
10291, 101syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u
) )
10343ad2antrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  G  e. CMnd )
10489adantrr 715 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  u.  b )  e.  Fin )
10545ad2antrr 724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  F : A
--> B )
10686adantrr 715 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  u.  b )  C_  A
)
107 fssres 5733 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : A --> B  /\  ( y  u.  b
)  C_  A )  ->  ( F  |`  (
y  u.  b ) ) : ( y  u.  b ) --> B )
108105, 106, 107syl2anc 659 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( y  u.  b
) ) : ( y  u.  b ) --> B )
109 resss 5116 . . . . . . . . . . . . . . . . . . 19  |-  ( F  |`  ( y  u.  b
) )  C_  F
110 cnvss 4995 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  |`  ( y  u.  b ) )  C_  F  ->  `' ( F  |`  ( y  u.  b
) )  C_  `' F )
111 imass1 5190 . . . . . . . . . . . . . . . . . . 19  |-  ( `' ( F  |`  (
y  u.  b ) )  C_  `' F  ->  ( `' ( F  |`  ( y  u.  b
) ) " ( _V  \  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
112109, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( `' ( F  |`  (
y  u.  b ) ) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
11353ad2antrr 724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  W )
114112, 113syl5ss 3452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( `' ( F  |`  ( y  u.  b ) )
" ( _V  \  {  .0.  } ) ) 
C_  W )
115104, 108fisuppfi 7870 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( `' ( F  |`  ( y  u.  b ) )
" ( _V  \  {  .0.  } ) )  e.  Fin )
11641, 42, 103, 104, 108, 114, 115gsumresOLD 17247 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( ( F  |`  (
y  u.  b ) )  |`  W )
)  =  ( G 
gsumg  ( F  |`  ( y  u.  b ) ) ) )
117 resres 5105 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( F  |`  ( (
y  u.  b )  i^i  W ) )
118 indir 3697 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  u.  b )  i^i  W )  =  ( ( y  i^i 
W )  u.  (
b  i^i  W )
)
11984, 36syl6ss 3453 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  W )
120119adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  b  C_  W )
121 df-ss 3427 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b 
C_  W  <->  ( b  i^i  W )  =  b )
122120, 121sylib 196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( b  i^i  W )  =  b )
123122uneq2d 3596 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  ( b  i^i  W
) )  =  ( ( y  i^i  W
)  u.  b ) )
124 simprr 758 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  i^i  W )  C_  b
)
125 ssequn1 3612 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  i^i  W ) 
C_  b  <->  ( (
y  i^i  W )  u.  b )  =  b )
126124, 125sylib 196 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  b )  =  b )
127123, 126eqtrd 2443 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  ( b  i^i  W
) )  =  b )
128118, 127syl5eq 2455 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  u.  b )  i^i  W )  =  b )
129128reseq2d 5093 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( ( y  u.  b )  i^i  W
) )  =  ( F  |`  b )
)
130117, 129syl5eq 2455 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( F  |`  b )
)
131 resabs1 5121 . . . . . . . . . . . . . . . . . . 19  |-  ( b 
C_  W  ->  (
( F  |`  W )  |`  b )  =  ( F  |`  b )
)
132120, 131syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  W )  |`  b )  =  ( F  |`  b )
)
133130, 132eqtr4d 2446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( ( F  |`  W )  |`  b ) )
134133oveq2d 6293 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( ( F  |`  (
y  u.  b ) )  |`  W )
)  =  ( G 
gsumg  ( ( F  |`  W )  |`  b
) ) )
135116, 134eqtr3d 2445 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( F  |`  ( y  u.  b ) ) )  =  ( G  gsumg  ( ( F  |`  W )  |`  b ) ) )
136135eleq1d 2471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u  <->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
137136biimpd 207 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
138137expr 613 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( ( y  i^i 
W )  C_  b  ->  ( ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
139138com23 78 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u  ->  ( (
y  i^i  W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
140102, 139syld 42 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  (
( y  i^i  W
)  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
141140ralrimdva 2821 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( ( y  i^i  W ) 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
142 sseq1 3462 . . . . . . . . . . . 12  |-  ( a  =  ( y  i^i 
W )  ->  (
a  C_  b  <->  ( y  i^i  W )  C_  b
) )
143142imbi1d 315 . . . . . . . . . . 11  |-  ( a  =  ( y  i^i 
W )  ->  (
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  ( ( y  i^i  W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
144143ralbidv 2842 . . . . . . . . . 10  |-  ( a  =  ( y  i^i 
W )  ->  ( A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin )
( ( y  i^i 
W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
145144rspcev 3159 . . . . . . . . 9  |-  ( ( ( y  i^i  W
)  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin )
( ( y  i^i 
W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
14680, 141, 145syl6an 543 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
147146rexlimdva 2895 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
14868, 147impbid 191 . . . . . 6  |-  ( ph  ->  ( E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
149148imbi2d 314 . . . . 5  |-  ( ph  ->  ( ( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  <->  ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) )
150149ralbidv 2842 . . . 4  |-  ( ph  ->  ( A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) )
151150anbi2d 702 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
152 eqid 2402 . . . 4  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
153 eqid 2402 . . . 4  |-  ( ~P ( A  i^i  W
)  i^i  Fin )  =  ( ~P ( A  i^i  W )  i^i 
Fin )
154 tsmsres.2 . . . 4  |-  ( ph  ->  G  e.  TopSp )
155 tsmsres.a . . . . 5  |-  ( ph  ->  A  e.  V )
156 inex1g 4536 . . . . 5  |-  ( A  e.  V  ->  ( A  i^i  W )  e. 
_V )
157155, 156syl 17 . . . 4  |-  ( ph  ->  ( A  i^i  W
)  e.  _V )
158 fssres 5733 . . . . . 6  |-  ( ( F : A --> B  /\  ( A  i^i  W ) 
C_  A )  -> 
( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
15945, 1, 158sylancl 660 . . . . 5  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
160 resres 5105 . . . . . . 7  |-  ( ( F  |`  A )  |`  W )  =  ( F  |`  ( A  i^i  W ) )
161 ffn 5713 . . . . . . . . 9  |-  ( F : A --> B  ->  F  Fn  A )
162 fnresdm 5670 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
16345, 161, 1623syl 20 . . . . . . . 8  |-  ( ph  ->  ( F  |`  A )  =  F )
164163reseq1d 5092 . . . . . . 7  |-  ( ph  ->  ( ( F  |`  A )  |`  W )  =  ( F  |`  W ) )
165160, 164syl5eqr 2457 . . . . . 6  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
166165feq1d 5699 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B  <-> 
( F  |`  W ) : ( A  i^i  W ) --> B ) )
167159, 166mpbid 210 . . . 4  |-  ( ph  ->  ( F  |`  W ) : ( A  i^i  W ) --> B )
16841, 152, 153, 43, 154, 157, 167eltsms 20921 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  |`  W ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) ) ) )
169 eqid 2402 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
17041, 152, 169, 43, 154, 155, 45eltsms 20921 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
171151, 168, 1703bitr4d 285 . 2  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  |`  W ) )  <->  x  e.  ( G tsums  F ) ) )
172171eqrdv 2399 1  |-  ( ph  ->  ( G tsums  ( F  |`  W ) )  =  ( G tsums  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2753   E.wrex 2754   _Vcvv 3058    \ cdif 3410    u. cun 3411    i^i cin 3412    C_ wss 3413   ~Pcpw 3954   {csn 3971   `'ccnv 4821    |` cres 4824   "cima 4825    Fn wfn 5563   -->wf 5564   ` cfv 5568  (class class class)co 6277   Fincfn 7553   Basecbs 14839   TopOpenctopn 15034   0gc0g 15052    gsumg cgsu 15053  CMndccmn 17120   TopSpctps 19687   tsums ctsu 20914
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4506  ax-sep 4516  ax-nul 4524  ax-pow 4571  ax-pr 4629  ax-un 6573  ax-cnex 9577  ax-resscn 9578  ax-1cn 9579  ax-icn 9580  ax-addcl 9581  ax-addrcl 9582  ax-mulcl 9583  ax-mulrcl 9584  ax-mulcom 9585  ax-addass 9586  ax-mulass 9587  ax-distr 9588  ax-i2m1 9589  ax-1ne0 9590  ax-1rid 9591  ax-rnegex 9592  ax-rrecex 9593  ax-cnre 9594  ax-pre-lttri 9595  ax-pre-lttrn 9596  ax-pre-ltadd 9597  ax-pre-mulgt0 9598
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2758  df-rex 2759  df-reu 2760  df-rmo 2761  df-rab 2762  df-v 3060  df-sbc 3277  df-csb 3373  df-dif 3416  df-un 3418  df-in 3420  df-ss 3427  df-pss 3429  df-nul 3738  df-if 3885  df-pw 3956  df-sn 3972  df-pr 3974  df-tp 3976  df-op 3978  df-uni 4191  df-int 4227  df-iun 4272  df-br 4395  df-opab 4453  df-mpt 4454  df-tr 4489  df-eprel 4733  df-id 4737  df-po 4743  df-so 4744  df-fr 4781  df-se 4782  df-we 4783  df-xp 4828  df-rel 4829  df-cnv 4830  df-co 4831  df-dm 4832  df-rn 4833  df-res 4834  df-ima 4835  df-pred 5366  df-ord 5412  df-on 5413  df-lim 5414  df-suc 5415  df-iota 5532  df-fun 5570  df-fn 5571  df-f 5572  df-f1 5573  df-fo 5574  df-f1o 5575  df-fv 5576  df-isom 5577  df-riota 6239  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6683  df-1st 6783  df-2nd 6784  df-supp 6902  df-wrecs 7012  df-recs 7074  df-rdg 7112  df-1o 7166  df-oadd 7170  df-er 7347  df-map 7458  df-en 7554  df-dom 7555  df-sdom 7556  df-fin 7557  df-fsupp 7863  df-oi 7968  df-card 8351  df-pnf 9659  df-mnf 9660  df-xr 9661  df-ltxr 9662  df-le 9663  df-sub 9842  df-neg 9843  df-nn 10576  df-n0 10836  df-z 10905  df-uz 11127  df-fz 11725  df-fzo 11853  df-seq 12150  df-hash 12451  df-0g 15054  df-gsum 15055  df-mgm 16194  df-sgrp 16233  df-mnd 16243  df-cntz 16677  df-cmn 17122  df-fbas 18734  df-fg 18735  df-top 19689  df-topon 19692  df-topsp 19693  df-ntr 19811  df-nei 19890  df-fil 20637  df-fm 20729  df-flim 20730  df-flf 20731  df-tsms 20915
This theorem is referenced by:  esumss  28505
  Copyright terms: Public domain W3C validator