MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsresOLD Structured version   Unicode version

Theorem tsmsresOLD 20380
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) Obsolete version of tsmsres 20381 as of 25-Jul-2019. (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
tsmsres.b  |-  B  =  ( Base `  G
)
tsmsres.z  |-  .0.  =  ( 0g `  G )
tsmsres.1  |-  ( ph  ->  G  e. CMnd )
tsmsres.2  |-  ( ph  ->  G  e.  TopSp )
tsmsres.a  |-  ( ph  ->  A  e.  V )
tsmsres.f  |-  ( ph  ->  F : A --> B )
tsmsresOLD.s  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  W )
Assertion
Ref Expression
tsmsresOLD  |-  ( ph  ->  ( G tsums  ( F  |`  W ) )  =  ( G tsums  F ) )

Proof of Theorem tsmsresOLD
Dummy variables  a 
b  u  y  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3718 . . . . . . . . . . . 12  |-  ( A  i^i  W )  C_  A
2 sspwb 4696 . . . . . . . . . . . 12  |-  ( ( A  i^i  W ) 
C_  A  <->  ~P ( A  i^i  W )  C_  ~P A )
31, 2mpbi 208 . . . . . . . . . . 11  |-  ~P ( A  i^i  W )  C_  ~P A
4 ssrin 3723 . . . . . . . . . . 11  |-  ( ~P ( A  i^i  W
)  C_  ~P A  ->  ( ~P ( A  i^i  W )  i^i 
Fin )  C_  ( ~P A  i^i  Fin )
)
53, 4ax-mp 5 . . . . . . . . . 10  |-  ( ~P ( A  i^i  W
)  i^i  Fin )  C_  ( ~P A  i^i  Fin )
6 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)
75, 6sseldi 3502 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  a  e.  ( ~P A  i^i  Fin ) )
8 elfpw 7818 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ~P A  i^i  Fin )  <->  ( z  C_  A  /\  z  e. 
Fin ) )
98simplbi 460 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  C_  A )
109adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  C_  A
)
11 ssrin 3723 . . . . . . . . . . . . . 14  |-  ( z 
C_  A  ->  (
z  i^i  W )  C_  ( A  i^i  W
) )
1210, 11syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  C_  ( A  i^i  W ) )
138simprbi 464 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  e.  Fin )
1413adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  e.  Fin )
15 inss1 3718 . . . . . . . . . . . . . 14  |-  ( z  i^i  W )  C_  z
16 ssfi 7737 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Fin  /\  ( z  i^i  W
)  C_  z )  ->  ( z  i^i  W
)  e.  Fin )
1714, 15, 16sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  e.  Fin )
18 elfpw 7818 . . . . . . . . . . . . 13  |-  ( ( z  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( (
z  i^i  W )  C_  ( A  i^i  W
)  /\  ( z  i^i  W )  e.  Fin ) )
1912, 17, 18sylanbrc 664 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)
20 sseq2 3526 . . . . . . . . . . . . . . 15  |-  ( b  =  ( z  i^i 
W )  ->  (
a  C_  b  <->  a  C_  ( z  i^i  W
) ) )
21 ssin 3720 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  z  /\  a  C_  W )  <->  a  C_  ( z  i^i  W
) )
2220, 21syl6bbr 263 . . . . . . . . . . . . . 14  |-  ( b  =  ( z  i^i 
W )  ->  (
a  C_  b  <->  ( a  C_  z  /\  a  C_  W ) ) )
23 reseq2 5266 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( z  i^i 
W )  ->  (
( F  |`  W )  |`  b )  =  ( ( F  |`  W )  |`  ( z  i^i  W
) ) )
24 inss2 3719 . . . . . . . . . . . . . . . . . 18  |-  ( z  i^i  W )  C_  W
25 resabs1 5300 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  i^i  W ) 
C_  W  ->  (
( F  |`  W )  |`  ( z  i^i  W
) )  =  ( F  |`  ( z  i^i  W ) ) )
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  W )  |`  ( z  i^i  W
) )  =  ( F  |`  ( z  i^i  W ) )
2723, 26syl6eq 2524 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( z  i^i 
W )  ->  (
( F  |`  W )  |`  b )  =  ( F  |`  ( z  i^i  W ) ) )
2827oveq2d 6298 . . . . . . . . . . . . . . 15  |-  ( b  =  ( z  i^i 
W )  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  =  ( G  gsumg  ( F  |`  (
z  i^i  W )
) ) )
2928eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( b  =  ( z  i^i 
W )  ->  (
( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u  <->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) )
3022, 29imbi12d 320 . . . . . . . . . . . . 13  |-  ( b  =  ( z  i^i 
W )  ->  (
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  ( ( a 
C_  z  /\  a  C_  W )  ->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
3130rspcv 3210 . . . . . . . . . . . 12  |-  ( ( z  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  ( A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( (
a  C_  z  /\  a  C_  W )  -> 
( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
3219, 31syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( (
a  C_  z  /\  a  C_  W )  -> 
( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
33 elfpw 7818 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( a  C_  ( A  i^i  W
)  /\  a  e.  Fin ) )
3433simplbi 460 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  a  C_  ( A  i^i  W
) )
3534ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  ( A  i^i  W ) )
36 inss2 3719 . . . . . . . . . . . . . 14  |-  ( A  i^i  W )  C_  W
3735, 36syl6ss 3516 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  W
)
3837biantrud 507 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( a  C_  z 
<->  ( a  C_  z  /\  a  C_  W ) ) )
39 resres 5284 . . . . . . . . . . . . . . 15  |-  ( ( F  |`  z )  |`  W )  =  ( F  |`  ( z  i^i  W ) )
4039oveq2i 6293 . . . . . . . . . . . . . 14  |-  ( G 
gsumg  ( ( F  |`  z )  |`  W ) )  =  ( G 
gsumg  ( F  |`  ( z  i^i  W ) ) )
41 tsmsres.b . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  G
)
42 tsmsres.z . . . . . . . . . . . . . . 15  |-  .0.  =  ( 0g `  G )
43 tsmsres.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e. CMnd )
4443ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
45 tsmsres.f . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : A --> B )
4645ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  F : A --> B )
47 fssres 5749 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> B  /\  z  C_  A )  -> 
( F  |`  z
) : z --> B )
4846, 10, 47syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  z ) : z --> B )
49 resss 5295 . . . . . . . . . . . . . . . . 17  |-  ( F  |`  z )  C_  F
50 cnvss 5173 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  z )  C_  F  ->  `' ( F  |`  z )  C_  `' F )
51 imass1 5369 . . . . . . . . . . . . . . . . 17  |-  ( `' ( F  |`  z
)  C_  `' F  ->  ( `' ( F  |`  z ) " ( _V  \  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
5249, 50, 51mp2b 10 . . . . . . . . . . . . . . . 16  |-  ( `' ( F  |`  z
) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
53 tsmsresOLD.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( `' F "
( _V  \  {  .0.  } ) )  C_  W )
5453ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( `' F " ( _V  \  {  .0.  } ) )  C_  W )
5552, 54syl5ss 3515 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( F  |`  z ) " ( _V  \  {  .0.  } ) ) 
C_  W )
5614, 48fisuppfi 7833 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( `' ( F  |`  z ) " ( _V  \  {  .0.  } ) )  e.  Fin )
5741, 42, 44, 14, 48, 55, 56gsumresOLD 16716 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( ( F  |`  z )  |`  W ) )  =  ( G  gsumg  ( F  |`  z
) ) )
5840, 57syl5reqr 2523 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  z ) )  =  ( G  gsumg  ( F  |`  (
z  i^i  W )
) ) )
5958eleq1d 2536 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( G 
gsumg  ( F  |`  z ) )  e.  u  <->  ( G  gsumg  ( F  |`  ( z  i^i  W ) ) )  e.  u ) )
6038, 59imbi12d 320 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( a 
C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( ( a 
C_  z  /\  a  C_  W )  ->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
6132, 60sylibrd 234 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( a  C_  z  ->  ( G  gsumg  ( F  |`  z )
)  e.  u ) ) )
6261ralrimdva 2882 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
63 sseq1 3525 . . . . . . . . . . . 12  |-  ( y  =  a  ->  (
y  C_  z  <->  a  C_  z ) )
6463imbi1d 317 . . . . . . . . . . 11  |-  ( y  =  a  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
6564ralbidv 2903 . . . . . . . . . 10  |-  ( y  =  a  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
6665rspcev 3214 . . . . . . . . 9  |-  ( ( a  e.  ( ~P A  i^i  Fin )  /\  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) )
677, 62, 66syl6an 545 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
6867rexlimdva 2955 . . . . . . 7  |-  ( ph  ->  ( E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
69 elfpw 7818 . . . . . . . . . . . . 13  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
7069simplbi 460 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
7170adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  C_  A )
72 ssrin 3723 . . . . . . . . . . 11  |-  ( y 
C_  A  ->  (
y  i^i  W )  C_  ( A  i^i  W
) )
7371, 72syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  C_  ( A  i^i  W
) )
7469simprbi 464 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
7574adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
76 inss1 3718 . . . . . . . . . . 11  |-  ( y  i^i  W )  C_  y
77 ssfi 7737 . . . . . . . . . . 11  |-  ( ( y  e.  Fin  /\  ( y  i^i  W
)  C_  y )  ->  ( y  i^i  W
)  e.  Fin )
7875, 76, 77sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  e.  Fin )
79 elfpw 7818 . . . . . . . . . 10  |-  ( ( y  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( (
y  i^i  W )  C_  ( A  i^i  W
)  /\  ( y  i^i  W )  e.  Fin ) )
8073, 78, 79sylanbrc 664 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )
8170ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
y  C_  A )
82 elfpw 7818 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( b  C_  ( A  i^i  W
)  /\  b  e.  Fin ) )
8382simplbi 460 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  b  C_  ( A  i^i  W
) )
8483adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  ( A  i^i  W ) )
8584, 1syl6ss 3516 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  A )
8681, 85unssd 3680 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  C_  A )
8782simprbi 464 . . . . . . . . . . . . . 14  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  b  e.  Fin )
88 unfi 7783 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Fin  /\  b  e.  Fin )  ->  ( y  u.  b
)  e.  Fin )
8975, 87, 88syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  e.  Fin )
90 elfpw 7818 . . . . . . . . . . . . 13  |-  ( ( y  u.  b )  e.  ( ~P A  i^i  Fin )  <->  ( (
y  u.  b ) 
C_  A  /\  (
y  u.  b )  e.  Fin ) )
9186, 89, 90sylanbrc 664 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  e.  ( ~P A  i^i  Fin )
)
92 ssun1 3667 . . . . . . . . . . . . . . . 16  |-  y  C_  ( y  u.  b
)
93 id 22 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  b )  ->  z  =  ( y  u.  b ) )
9492, 93syl5sseqr 3553 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  b )  ->  y  C_  z )
95 pm5.5 336 . . . . . . . . . . . . . . 15  |-  ( y 
C_  z  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
9694, 95syl 16 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  b )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
97 reseq2 5266 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  b )  ->  ( F  |`  z )  =  ( F  |`  (
y  u.  b ) ) )
9897oveq2d 6298 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  b )  ->  ( G  gsumg  ( F  |`  z
) )  =  ( G  gsumg  ( F  |`  (
y  u.  b ) ) ) )
9998eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  b )  ->  (
( G  gsumg  ( F  |`  z
) )  e.  u  <->  ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u
) )
10096, 99bitrd 253 . . . . . . . . . . . . 13  |-  ( z  =  ( y  u.  b )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u ) )
101100rspcv 3210 . . . . . . . . . . . 12  |-  ( ( y  u.  b )  e.  ( ~P A  i^i  Fin )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  ( G  gsumg  ( F  |`  ( y  u.  b ) ) )  e.  u ) )
10291, 101syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u
) )
10343ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  G  e. CMnd )
10489adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  u.  b )  e.  Fin )
10545ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  F : A
--> B )
10686adantrr 716 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  u.  b )  C_  A
)
107 fssres 5749 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : A --> B  /\  ( y  u.  b
)  C_  A )  ->  ( F  |`  (
y  u.  b ) ) : ( y  u.  b ) --> B )
108105, 106, 107syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( y  u.  b
) ) : ( y  u.  b ) --> B )
109 resss 5295 . . . . . . . . . . . . . . . . . . 19  |-  ( F  |`  ( y  u.  b
) )  C_  F
110 cnvss 5173 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  |`  ( y  u.  b ) )  C_  F  ->  `' ( F  |`  ( y  u.  b
) )  C_  `' F )
111 imass1 5369 . . . . . . . . . . . . . . . . . . 19  |-  ( `' ( F  |`  (
y  u.  b ) )  C_  `' F  ->  ( `' ( F  |`  ( y  u.  b
) ) " ( _V  \  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) ) )
112109, 110, 111mp2b 10 . . . . . . . . . . . . . . . . . 18  |-  ( `' ( F  |`  (
y  u.  b ) ) " ( _V 
\  {  .0.  }
) )  C_  ( `' F " ( _V 
\  {  .0.  }
) )
11353ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( `' F " ( _V  \  {  .0.  } ) ) 
C_  W )
114112, 113syl5ss 3515 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( `' ( F  |`  ( y  u.  b ) )
" ( _V  \  {  .0.  } ) ) 
C_  W )
115104, 108fisuppfi 7833 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( `' ( F  |`  ( y  u.  b ) )
" ( _V  \  {  .0.  } ) )  e.  Fin )
11641, 42, 103, 104, 108, 114, 115gsumresOLD 16716 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( ( F  |`  (
y  u.  b ) )  |`  W )
)  =  ( G 
gsumg  ( F  |`  ( y  u.  b ) ) ) )
117 resres 5284 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( F  |`  ( (
y  u.  b )  i^i  W ) )
118 indir 3746 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  u.  b )  i^i  W )  =  ( ( y  i^i 
W )  u.  (
b  i^i  W )
)
11984, 36syl6ss 3516 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  W )
120119adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  b  C_  W )
121 df-ss 3490 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b 
C_  W  <->  ( b  i^i  W )  =  b )
122120, 121sylib 196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( b  i^i  W )  =  b )
123122uneq2d 3658 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  ( b  i^i  W
) )  =  ( ( y  i^i  W
)  u.  b ) )
124 simprr 756 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  i^i  W )  C_  b
)
125 ssequn1 3674 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  i^i  W ) 
C_  b  <->  ( (
y  i^i  W )  u.  b )  =  b )
126124, 125sylib 196 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  b )  =  b )
127123, 126eqtrd 2508 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  ( b  i^i  W
) )  =  b )
128118, 127syl5eq 2520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  u.  b )  i^i  W )  =  b )
129128reseq2d 5271 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( ( y  u.  b )  i^i  W
) )  =  ( F  |`  b )
)
130117, 129syl5eq 2520 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( F  |`  b )
)
131 resabs1 5300 . . . . . . . . . . . . . . . . . . 19  |-  ( b 
C_  W  ->  (
( F  |`  W )  |`  b )  =  ( F  |`  b )
)
132120, 131syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  W )  |`  b )  =  ( F  |`  b )
)
133130, 132eqtr4d 2511 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( ( F  |`  W )  |`  b ) )
134133oveq2d 6298 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( ( F  |`  (
y  u.  b ) )  |`  W )
)  =  ( G 
gsumg  ( ( F  |`  W )  |`  b
) ) )
135116, 134eqtr3d 2510 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( F  |`  ( y  u.  b ) ) )  =  ( G  gsumg  ( ( F  |`  W )  |`  b ) ) )
136135eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u  <->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
137136biimpd 207 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
138137expr 615 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( ( y  i^i 
W )  C_  b  ->  ( ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
139138com23 78 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u  ->  ( (
y  i^i  W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
140102, 139syld 44 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  (
( y  i^i  W
)  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
141140ralrimdva 2882 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( ( y  i^i  W ) 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
142 sseq1 3525 . . . . . . . . . . . 12  |-  ( a  =  ( y  i^i 
W )  ->  (
a  C_  b  <->  ( y  i^i  W )  C_  b
) )
143142imbi1d 317 . . . . . . . . . . 11  |-  ( a  =  ( y  i^i 
W )  ->  (
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  ( ( y  i^i  W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
144143ralbidv 2903 . . . . . . . . . 10  |-  ( a  =  ( y  i^i 
W )  ->  ( A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin )
( ( y  i^i 
W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
145144rspcev 3214 . . . . . . . . 9  |-  ( ( ( y  i^i  W
)  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin )
( ( y  i^i 
W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
14680, 141, 145syl6an 545 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
147146rexlimdva 2955 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
14868, 147impbid 191 . . . . . 6  |-  ( ph  ->  ( E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
149148imbi2d 316 . . . . 5  |-  ( ph  ->  ( ( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  <->  ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) )
150149ralbidv 2903 . . . 4  |-  ( ph  ->  ( A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) )
151150anbi2d 703 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
152 eqid 2467 . . . 4  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
153 eqid 2467 . . . 4  |-  ( ~P ( A  i^i  W
)  i^i  Fin )  =  ( ~P ( A  i^i  W )  i^i 
Fin )
154 tsmsres.2 . . . 4  |-  ( ph  ->  G  e.  TopSp )
155 tsmsres.a . . . . 5  |-  ( ph  ->  A  e.  V )
156 inex1g 4590 . . . . 5  |-  ( A  e.  V  ->  ( A  i^i  W )  e. 
_V )
157155, 156syl 16 . . . 4  |-  ( ph  ->  ( A  i^i  W
)  e.  _V )
158 fssres 5749 . . . . . 6  |-  ( ( F : A --> B  /\  ( A  i^i  W ) 
C_  A )  -> 
( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
15945, 1, 158sylancl 662 . . . . 5  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
160 resres 5284 . . . . . . 7  |-  ( ( F  |`  A )  |`  W )  =  ( F  |`  ( A  i^i  W ) )
161 ffn 5729 . . . . . . . . 9  |-  ( F : A --> B  ->  F  Fn  A )
162 fnresdm 5688 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
16345, 161, 1623syl 20 . . . . . . . 8  |-  ( ph  ->  ( F  |`  A )  =  F )
164163reseq1d 5270 . . . . . . 7  |-  ( ph  ->  ( ( F  |`  A )  |`  W )  =  ( F  |`  W ) )
165160, 164syl5eqr 2522 . . . . . 6  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
166165feq1d 5715 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B  <-> 
( F  |`  W ) : ( A  i^i  W ) --> B ) )
167159, 166mpbid 210 . . . 4  |-  ( ph  ->  ( F  |`  W ) : ( A  i^i  W ) --> B )
16841, 152, 153, 43, 154, 157, 167eltsms 20366 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  |`  W ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) ) ) )
169 eqid 2467 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
17041, 152, 169, 43, 154, 155, 45eltsms 20366 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
171151, 168, 1703bitr4d 285 . 2  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  |`  W ) )  <->  x  e.  ( G tsums  F ) ) )
172171eqrdv 2464 1  |-  ( ph  ->  ( G tsums  ( F  |`  W ) )  =  ( G tsums  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    \ cdif 3473    u. cun 3474    i^i cin 3475    C_ wss 3476   ~Pcpw 4010   {csn 4027   `'ccnv 4998    |` cres 5001   "cima 5002    Fn wfn 5581   -->wf 5582   ` cfv 5586  (class class class)co 6282   Fincfn 7513   Basecbs 14486   TopOpenctopn 14673   0gc0g 14691    gsumg cgsu 14692  CMndccmn 16594   TopSpctps 19164   tsums ctsu 20359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-isom 5595  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-supp 6899  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-fsupp 7826  df-oi 7931  df-card 8316  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-nn 10533  df-n0 10792  df-z 10861  df-uz 11079  df-fz 11669  df-fzo 11789  df-seq 12072  df-hash 12370  df-0g 14693  df-gsum 14694  df-mnd 15728  df-cntz 16150  df-cmn 16596  df-fbas 18187  df-fg 18188  df-top 19166  df-topon 19169  df-topsp 19170  df-ntr 19287  df-nei 19365  df-fil 20082  df-fm 20174  df-flim 20175  df-flf 20176  df-tsms 20360
This theorem is referenced by:  esumss  27718
  Copyright terms: Public domain W3C validator