MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsres Structured version   Unicode version

Theorem tsmsres 20938
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
tsmsres.b  |-  B  =  ( Base `  G
)
tsmsres.z  |-  .0.  =  ( 0g `  G )
tsmsres.1  |-  ( ph  ->  G  e. CMnd )
tsmsres.2  |-  ( ph  ->  G  e.  TopSp )
tsmsres.a  |-  ( ph  ->  A  e.  V )
tsmsres.f  |-  ( ph  ->  F : A --> B )
tsmsres.s  |-  ( ph  ->  ( F supp  .0.  )  C_  W )
Assertion
Ref Expression
tsmsres  |-  ( ph  ->  ( G tsums  ( F  |`  W ) )  =  ( G tsums  F ) )

Proof of Theorem tsmsres
Dummy variables  a 
b  u  y  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3659 . . . . . . . . . . . 12  |-  ( A  i^i  W )  C_  A
2 sspwb 4640 . . . . . . . . . . . 12  |-  ( ( A  i^i  W ) 
C_  A  <->  ~P ( A  i^i  W )  C_  ~P A )
31, 2mpbi 208 . . . . . . . . . . 11  |-  ~P ( A  i^i  W )  C_  ~P A
4 ssrin 3664 . . . . . . . . . . 11  |-  ( ~P ( A  i^i  W
)  C_  ~P A  ->  ( ~P ( A  i^i  W )  i^i 
Fin )  C_  ( ~P A  i^i  Fin )
)
53, 4ax-mp 5 . . . . . . . . . 10  |-  ( ~P ( A  i^i  W
)  i^i  Fin )  C_  ( ~P A  i^i  Fin )
6 simpr 459 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)
75, 6sseldi 3440 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  a  e.  ( ~P A  i^i  Fin ) )
8 elfpw 7856 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ~P A  i^i  Fin )  <->  ( z  C_  A  /\  z  e. 
Fin ) )
98simplbi 458 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  C_  A )
109adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  C_  A
)
11 ssrin 3664 . . . . . . . . . . . . . 14  |-  ( z 
C_  A  ->  (
z  i^i  W )  C_  ( A  i^i  W
) )
1210, 11syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  C_  ( A  i^i  W ) )
138simprbi 462 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  e.  Fin )
1413adantl 464 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  e.  Fin )
15 inss1 3659 . . . . . . . . . . . . . 14  |-  ( z  i^i  W )  C_  z
16 ssfi 7775 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Fin  /\  ( z  i^i  W
)  C_  z )  ->  ( z  i^i  W
)  e.  Fin )
1714, 15, 16sylancl 660 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  e.  Fin )
18 elfpw 7856 . . . . . . . . . . . . 13  |-  ( ( z  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( (
z  i^i  W )  C_  ( A  i^i  W
)  /\  ( z  i^i  W )  e.  Fin ) )
1912, 17, 18sylanbrc 662 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)
20 sseq2 3464 . . . . . . . . . . . . . . 15  |-  ( b  =  ( z  i^i 
W )  ->  (
a  C_  b  <->  a  C_  ( z  i^i  W
) ) )
21 ssin 3661 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  z  /\  a  C_  W )  <->  a  C_  ( z  i^i  W
) )
2220, 21syl6bbr 263 . . . . . . . . . . . . . 14  |-  ( b  =  ( z  i^i 
W )  ->  (
a  C_  b  <->  ( a  C_  z  /\  a  C_  W ) ) )
23 reseq2 5089 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( z  i^i 
W )  ->  (
( F  |`  W )  |`  b )  =  ( ( F  |`  W )  |`  ( z  i^i  W
) ) )
24 inss2 3660 . . . . . . . . . . . . . . . . . 18  |-  ( z  i^i  W )  C_  W
25 resabs1 5122 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  i^i  W ) 
C_  W  ->  (
( F  |`  W )  |`  ( z  i^i  W
) )  =  ( F  |`  ( z  i^i  W ) ) )
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  W )  |`  ( z  i^i  W
) )  =  ( F  |`  ( z  i^i  W ) )
2723, 26syl6eq 2459 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( z  i^i 
W )  ->  (
( F  |`  W )  |`  b )  =  ( F  |`  ( z  i^i  W ) ) )
2827oveq2d 6294 . . . . . . . . . . . . . . 15  |-  ( b  =  ( z  i^i 
W )  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  =  ( G  gsumg  ( F  |`  (
z  i^i  W )
) ) )
2928eleq1d 2471 . . . . . . . . . . . . . 14  |-  ( b  =  ( z  i^i 
W )  ->  (
( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u  <->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) )
3022, 29imbi12d 318 . . . . . . . . . . . . 13  |-  ( b  =  ( z  i^i 
W )  ->  (
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  ( ( a 
C_  z  /\  a  C_  W )  ->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
3130rspcv 3156 . . . . . . . . . . . 12  |-  ( ( z  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  ( A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( (
a  C_  z  /\  a  C_  W )  -> 
( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
3219, 31syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( (
a  C_  z  /\  a  C_  W )  -> 
( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
33 elfpw 7856 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( a  C_  ( A  i^i  W
)  /\  a  e.  Fin ) )
3433simplbi 458 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  a  C_  ( A  i^i  W
) )
3534ad2antlr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  ( A  i^i  W ) )
36 inss2 3660 . . . . . . . . . . . . . 14  |-  ( A  i^i  W )  C_  W
3735, 36syl6ss 3454 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  W
)
3837biantrud 505 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( a  C_  z 
<->  ( a  C_  z  /\  a  C_  W ) ) )
39 resres 5106 . . . . . . . . . . . . . . 15  |-  ( ( F  |`  z )  |`  W )  =  ( F  |`  ( z  i^i  W ) )
4039oveq2i 6289 . . . . . . . . . . . . . 14  |-  ( G 
gsumg  ( ( F  |`  z )  |`  W ) )  =  ( G 
gsumg  ( F  |`  ( z  i^i  W ) ) )
41 tsmsres.b . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  G
)
42 tsmsres.z . . . . . . . . . . . . . . 15  |-  .0.  =  ( 0g `  G )
43 tsmsres.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e. CMnd )
4443ad2antrr 724 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
45 tsmsres.f . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : A --> B )
4645ad2antrr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  F : A --> B )
4746, 10fssresd 5735 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  z ) : z --> B )
48 tsmsres.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  e.  V )
49 fex 6126 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
5045, 48, 49syl2anc 659 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  _V )
5150ad2antrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  F  e.  _V )
52 fvex 5859 . . . . . . . . . . . . . . . . . 18  |-  ( 0g
`  G )  e. 
_V
5342, 52eqeltri 2486 . . . . . . . . . . . . . . . . 17  |-  .0.  e.  _V
54 ressuppss 6922 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  |`  z ) supp  .0.  )  C_  ( F supp  .0.  )
)
5551, 53, 54sylancl 660 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( F  |`  z ) supp  .0.  )  C_  ( F supp  .0.  )
)
56 tsmsres.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F supp  .0.  )  C_  W )
5756ad2antrr 724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F supp  .0.  )  C_  W )
5855, 57sstrd 3452 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( F  |`  z ) supp  .0.  )  C_  W )
5953a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  .0.  e.  _V )
6047, 14, 59fdmfifsupp 7873 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  z ) finSupp  .0.  )
6141, 42, 44, 14, 47, 58, 60gsumres 17245 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( ( F  |`  z )  |`  W ) )  =  ( G  gsumg  ( F  |`  z
) ) )
6240, 61syl5reqr 2458 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  z ) )  =  ( G  gsumg  ( F  |`  (
z  i^i  W )
) ) )
6362eleq1d 2471 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( G 
gsumg  ( F  |`  z ) )  e.  u  <->  ( G  gsumg  ( F  |`  ( z  i^i  W ) ) )  e.  u ) )
6438, 63imbi12d 318 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( a 
C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( ( a 
C_  z  /\  a  C_  W )  ->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
6532, 64sylibrd 234 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( a  C_  z  ->  ( G  gsumg  ( F  |`  z )
)  e.  u ) ) )
6665ralrimdva 2822 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
67 sseq1 3463 . . . . . . . . . . . 12  |-  ( y  =  a  ->  (
y  C_  z  <->  a  C_  z ) )
6867imbi1d 315 . . . . . . . . . . 11  |-  ( y  =  a  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
6968ralbidv 2843 . . . . . . . . . 10  |-  ( y  =  a  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
7069rspcev 3160 . . . . . . . . 9  |-  ( ( a  e.  ( ~P A  i^i  Fin )  /\  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) )
717, 66, 70syl6an 543 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
7271rexlimdva 2896 . . . . . . 7  |-  ( ph  ->  ( E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
73 elfpw 7856 . . . . . . . . . . . . 13  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
7473simplbi 458 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
7574adantl 464 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  C_  A )
76 ssrin 3664 . . . . . . . . . . 11  |-  ( y 
C_  A  ->  (
y  i^i  W )  C_  ( A  i^i  W
) )
7775, 76syl 17 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  C_  ( A  i^i  W
) )
7873simprbi 462 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
7978adantl 464 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
80 inss1 3659 . . . . . . . . . . 11  |-  ( y  i^i  W )  C_  y
81 ssfi 7775 . . . . . . . . . . 11  |-  ( ( y  e.  Fin  /\  ( y  i^i  W
)  C_  y )  ->  ( y  i^i  W
)  e.  Fin )
8279, 80, 81sylancl 660 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  e.  Fin )
83 elfpw 7856 . . . . . . . . . 10  |-  ( ( y  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( (
y  i^i  W )  C_  ( A  i^i  W
)  /\  ( y  i^i  W )  e.  Fin ) )
8477, 82, 83sylanbrc 662 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )
8574ad2antlr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
y  C_  A )
86 elfpw 7856 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( b  C_  ( A  i^i  W
)  /\  b  e.  Fin ) )
8786simplbi 458 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  b  C_  ( A  i^i  W
) )
8887adantl 464 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  ( A  i^i  W ) )
8988, 1syl6ss 3454 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  A )
9085, 89unssd 3619 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  C_  A )
9186simprbi 462 . . . . . . . . . . . . . 14  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  b  e.  Fin )
92 unfi 7821 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Fin  /\  b  e.  Fin )  ->  ( y  u.  b
)  e.  Fin )
9379, 91, 92syl2an 475 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  e.  Fin )
94 elfpw 7856 . . . . . . . . . . . . 13  |-  ( ( y  u.  b )  e.  ( ~P A  i^i  Fin )  <->  ( (
y  u.  b ) 
C_  A  /\  (
y  u.  b )  e.  Fin ) )
9590, 93, 94sylanbrc 662 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  e.  ( ~P A  i^i  Fin )
)
96 ssun1 3606 . . . . . . . . . . . . . . . 16  |-  y  C_  ( y  u.  b
)
97 id 22 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  b )  ->  z  =  ( y  u.  b ) )
9896, 97syl5sseqr 3491 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  b )  ->  y  C_  z )
99 pm5.5 334 . . . . . . . . . . . . . . 15  |-  ( y 
C_  z  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
10098, 99syl 17 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  b )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
101 reseq2 5089 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  b )  ->  ( F  |`  z )  =  ( F  |`  (
y  u.  b ) ) )
102101oveq2d 6294 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  b )  ->  ( G  gsumg  ( F  |`  z
) )  =  ( G  gsumg  ( F  |`  (
y  u.  b ) ) ) )
103102eleq1d 2471 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  b )  ->  (
( G  gsumg  ( F  |`  z
) )  e.  u  <->  ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u
) )
104100, 103bitrd 253 . . . . . . . . . . . . 13  |-  ( z  =  ( y  u.  b )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u ) )
105104rspcv 3156 . . . . . . . . . . . 12  |-  ( ( y  u.  b )  e.  ( ~P A  i^i  Fin )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  ( G  gsumg  ( F  |`  ( y  u.  b ) ) )  e.  u ) )
10695, 105syl 17 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u
) )
10743ad2antrr 724 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  G  e. CMnd )
10893adantrr 715 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  u.  b )  e.  Fin )
10945ad2antrr 724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  F : A
--> B )
11090adantrr 715 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  u.  b )  C_  A
)
111109, 110fssresd 5735 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( y  u.  b
) ) : ( y  u.  b ) --> B )
11250, 53jctir 536 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( F  e.  _V  /\  .0.  e.  _V )
)
113112ad2antrr 724 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  e.  _V  /\  .0.  e.  _V ) )
114 ressuppss 6922 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  |`  ( y  u.  b
) ) supp  .0.  )  C_  ( F supp  .0.  )
)
115113, 114syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) ) supp  .0.  )  C_  ( F supp  .0.  ) )
11656ad2antrr 724 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F supp  .0.  )  C_  W )
117115, 116sstrd 3452 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) ) supp  .0.  )  C_  W )
11853a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  .0.  e.  _V )
119111, 108, 118fdmfifsupp 7873 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( y  u.  b
) ) finSupp  .0.  )
12041, 42, 107, 108, 111, 117, 119gsumres 17245 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( ( F  |`  (
y  u.  b ) )  |`  W )
)  =  ( G 
gsumg  ( F  |`  ( y  u.  b ) ) ) )
121 resres 5106 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( F  |`  ( (
y  u.  b )  i^i  W ) )
122 indir 3698 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  u.  b )  i^i  W )  =  ( ( y  i^i 
W )  u.  (
b  i^i  W )
)
12388, 36syl6ss 3454 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  W )
124123adantrr 715 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  b  C_  W )
125 df-ss 3428 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b 
C_  W  <->  ( b  i^i  W )  =  b )
126124, 125sylib 196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( b  i^i  W )  =  b )
127126uneq2d 3597 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  ( b  i^i  W
) )  =  ( ( y  i^i  W
)  u.  b ) )
128 simprr 758 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  i^i  W )  C_  b
)
129 ssequn1 3613 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  i^i  W ) 
C_  b  <->  ( (
y  i^i  W )  u.  b )  =  b )
130128, 129sylib 196 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  b )  =  b )
131127, 130eqtrd 2443 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  ( b  i^i  W
) )  =  b )
132122, 131syl5eq 2455 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  u.  b )  i^i  W )  =  b )
133132reseq2d 5094 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( ( y  u.  b )  i^i  W
) )  =  ( F  |`  b )
)
134121, 133syl5eq 2455 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( F  |`  b )
)
135124resabs1d 5123 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  W )  |`  b )  =  ( F  |`  b )
)
136134, 135eqtr4d 2446 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( ( F  |`  W )  |`  b ) )
137136oveq2d 6294 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( ( F  |`  (
y  u.  b ) )  |`  W )
)  =  ( G 
gsumg  ( ( F  |`  W )  |`  b
) ) )
138120, 137eqtr3d 2445 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( F  |`  ( y  u.  b ) ) )  =  ( G  gsumg  ( ( F  |`  W )  |`  b ) ) )
139138eleq1d 2471 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u  <->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
140139biimpd 207 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
141140expr 613 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( ( y  i^i 
W )  C_  b  ->  ( ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
142141com23 78 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u  ->  ( (
y  i^i  W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
143106, 142syld 42 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  (
( y  i^i  W
)  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
144143ralrimdva 2822 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( ( y  i^i  W ) 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
145 sseq1 3463 . . . . . . . . . . . 12  |-  ( a  =  ( y  i^i 
W )  ->  (
a  C_  b  <->  ( y  i^i  W )  C_  b
) )
146145imbi1d 315 . . . . . . . . . . 11  |-  ( a  =  ( y  i^i 
W )  ->  (
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  ( ( y  i^i  W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
147146ralbidv 2843 . . . . . . . . . 10  |-  ( a  =  ( y  i^i 
W )  ->  ( A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin )
( ( y  i^i 
W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
148147rspcev 3160 . . . . . . . . 9  |-  ( ( ( y  i^i  W
)  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin )
( ( y  i^i 
W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
14984, 144, 148syl6an 543 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
150149rexlimdva 2896 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
15172, 150impbid 190 . . . . . 6  |-  ( ph  ->  ( E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
152151imbi2d 314 . . . . 5  |-  ( ph  ->  ( ( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  <->  ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) )
153152ralbidv 2843 . . . 4  |-  ( ph  ->  ( A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) )
154153anbi2d 702 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
155 eqid 2402 . . . 4  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
156 eqid 2402 . . . 4  |-  ( ~P ( A  i^i  W
)  i^i  Fin )  =  ( ~P ( A  i^i  W )  i^i 
Fin )
157 tsmsres.2 . . . 4  |-  ( ph  ->  G  e.  TopSp )
158 inex1g 4537 . . . . 5  |-  ( A  e.  V  ->  ( A  i^i  W )  e. 
_V )
15948, 158syl 17 . . . 4  |-  ( ph  ->  ( A  i^i  W
)  e.  _V )
160 fssres 5734 . . . . . 6  |-  ( ( F : A --> B  /\  ( A  i^i  W ) 
C_  A )  -> 
( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
16145, 1, 160sylancl 660 . . . . 5  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
162 resres 5106 . . . . . . 7  |-  ( ( F  |`  A )  |`  W )  =  ( F  |`  ( A  i^i  W ) )
163 ffn 5714 . . . . . . . . 9  |-  ( F : A --> B  ->  F  Fn  A )
164 fnresdm 5671 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
16545, 163, 1643syl 18 . . . . . . . 8  |-  ( ph  ->  ( F  |`  A )  =  F )
166165reseq1d 5093 . . . . . . 7  |-  ( ph  ->  ( ( F  |`  A )  |`  W )  =  ( F  |`  W ) )
167162, 166syl5eqr 2457 . . . . . 6  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
168167feq1d 5700 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B  <-> 
( F  |`  W ) : ( A  i^i  W ) --> B ) )
169161, 168mpbid 210 . . . 4  |-  ( ph  ->  ( F  |`  W ) : ( A  i^i  W ) --> B )
17041, 155, 156, 43, 157, 159, 169eltsms 20923 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  |`  W ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) ) ) )
171 eqid 2402 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
17241, 155, 171, 43, 157, 48, 45eltsms 20923 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
173154, 170, 1723bitr4d 285 . 2  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  |`  W ) )  <->  x  e.  ( G tsums  F ) ) )
174173eqrdv 2399 1  |-  ( ph  ->  ( G tsums  ( F  |`  W ) )  =  ( G tsums  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    = wceq 1405    e. wcel 1842   A.wral 2754   E.wrex 2755   _Vcvv 3059    u. cun 3412    i^i cin 3413    C_ wss 3414   ~Pcpw 3955    |` cres 4825    Fn wfn 5564   -->wf 5565   ` cfv 5569  (class class class)co 6278   supp csupp 6902   Fincfn 7554   Basecbs 14841   TopOpenctopn 15036   0gc0g 15054    gsumg cgsu 15055  CMndccmn 17122   TopSpctps 19689   tsums ctsu 20916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-oi 7969  df-card 8352  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-fzo 11855  df-seq 12152  df-hash 12453  df-0g 15056  df-gsum 15057  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-cntz 16679  df-cmn 17124  df-fbas 18736  df-fg 18737  df-top 19691  df-topon 19694  df-topsp 19695  df-ntr 19813  df-nei 19892  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-tsms 20917
This theorem is referenced by:  tsmssplit  20946
  Copyright terms: Public domain W3C validator