MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsres Structured version   Unicode version

Theorem tsmsres 20409
Description: Extend an infinite group sum by padding outside with zeroes. (Contributed by Mario Carneiro, 18-Sep-2015.) (Revised by AV, 25-Jul-2019.)
Hypotheses
Ref Expression
tsmsres.b  |-  B  =  ( Base `  G
)
tsmsres.z  |-  .0.  =  ( 0g `  G )
tsmsres.1  |-  ( ph  ->  G  e. CMnd )
tsmsres.2  |-  ( ph  ->  G  e.  TopSp )
tsmsres.a  |-  ( ph  ->  A  e.  V )
tsmsres.f  |-  ( ph  ->  F : A --> B )
tsmsres.s  |-  ( ph  ->  ( F supp  .0.  )  C_  W )
Assertion
Ref Expression
tsmsres  |-  ( ph  ->  ( G tsums  ( F  |`  W ) )  =  ( G tsums  F ) )

Proof of Theorem tsmsres
Dummy variables  a 
b  u  y  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss1 3718 . . . . . . . . . . . 12  |-  ( A  i^i  W )  C_  A
2 sspwb 4696 . . . . . . . . . . . 12  |-  ( ( A  i^i  W ) 
C_  A  <->  ~P ( A  i^i  W )  C_  ~P A )
31, 2mpbi 208 . . . . . . . . . . 11  |-  ~P ( A  i^i  W )  C_  ~P A
4 ssrin 3723 . . . . . . . . . . 11  |-  ( ~P ( A  i^i  W
)  C_  ~P A  ->  ( ~P ( A  i^i  W )  i^i 
Fin )  C_  ( ~P A  i^i  Fin )
)
53, 4ax-mp 5 . . . . . . . . . 10  |-  ( ~P ( A  i^i  W
)  i^i  Fin )  C_  ( ~P A  i^i  Fin )
6 simpr 461 . . . . . . . . . 10  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)
75, 6sseldi 3502 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  a  e.  ( ~P A  i^i  Fin ) )
8 elfpw 7822 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( ~P A  i^i  Fin )  <->  ( z  C_  A  /\  z  e. 
Fin ) )
98simplbi 460 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  C_  A )
109adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  C_  A
)
11 ssrin 3723 . . . . . . . . . . . . . 14  |-  ( z 
C_  A  ->  (
z  i^i  W )  C_  ( A  i^i  W
) )
1210, 11syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  C_  ( A  i^i  W ) )
138simprbi 464 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  e.  Fin )
1413adantl 466 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  e.  Fin )
15 inss1 3718 . . . . . . . . . . . . . 14  |-  ( z  i^i  W )  C_  z
16 ssfi 7740 . . . . . . . . . . . . . 14  |-  ( ( z  e.  Fin  /\  ( z  i^i  W
)  C_  z )  ->  ( z  i^i  W
)  e.  Fin )
1714, 15, 16sylancl 662 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  e.  Fin )
18 elfpw 7822 . . . . . . . . . . . . 13  |-  ( ( z  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( (
z  i^i  W )  C_  ( A  i^i  W
)  /\  ( z  i^i  W )  e.  Fin ) )
1912, 17, 18sylanbrc 664 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( z  i^i 
W )  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)
20 sseq2 3526 . . . . . . . . . . . . . . 15  |-  ( b  =  ( z  i^i 
W )  ->  (
a  C_  b  <->  a  C_  ( z  i^i  W
) ) )
21 ssin 3720 . . . . . . . . . . . . . . 15  |-  ( ( a  C_  z  /\  a  C_  W )  <->  a  C_  ( z  i^i  W
) )
2220, 21syl6bbr 263 . . . . . . . . . . . . . 14  |-  ( b  =  ( z  i^i 
W )  ->  (
a  C_  b  <->  ( a  C_  z  /\  a  C_  W ) ) )
23 reseq2 5268 . . . . . . . . . . . . . . . . 17  |-  ( b  =  ( z  i^i 
W )  ->  (
( F  |`  W )  |`  b )  =  ( ( F  |`  W )  |`  ( z  i^i  W
) ) )
24 inss2 3719 . . . . . . . . . . . . . . . . . 18  |-  ( z  i^i  W )  C_  W
25 resabs1 5302 . . . . . . . . . . . . . . . . . 18  |-  ( ( z  i^i  W ) 
C_  W  ->  (
( F  |`  W )  |`  ( z  i^i  W
) )  =  ( F  |`  ( z  i^i  W ) ) )
2624, 25ax-mp 5 . . . . . . . . . . . . . . . . 17  |-  ( ( F  |`  W )  |`  ( z  i^i  W
) )  =  ( F  |`  ( z  i^i  W ) )
2723, 26syl6eq 2524 . . . . . . . . . . . . . . . 16  |-  ( b  =  ( z  i^i 
W )  ->  (
( F  |`  W )  |`  b )  =  ( F  |`  ( z  i^i  W ) ) )
2827oveq2d 6300 . . . . . . . . . . . . . . 15  |-  ( b  =  ( z  i^i 
W )  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  =  ( G  gsumg  ( F  |`  (
z  i^i  W )
) ) )
2928eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( b  =  ( z  i^i 
W )  ->  (
( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u  <->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) )
3022, 29imbi12d 320 . . . . . . . . . . . . 13  |-  ( b  =  ( z  i^i 
W )  ->  (
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  ( ( a 
C_  z  /\  a  C_  W )  ->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
3130rspcv 3210 . . . . . . . . . . . 12  |-  ( ( z  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  ( A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( (
a  C_  z  /\  a  C_  W )  -> 
( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
3219, 31syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( (
a  C_  z  /\  a  C_  W )  -> 
( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
33 elfpw 7822 . . . . . . . . . . . . . . . 16  |-  ( a  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( a  C_  ( A  i^i  W
)  /\  a  e.  Fin ) )
3433simplbi 460 . . . . . . . . . . . . . . 15  |-  ( a  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  a  C_  ( A  i^i  W
) )
3534ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  ( A  i^i  W ) )
36 inss2 3719 . . . . . . . . . . . . . 14  |-  ( A  i^i  W )  C_  W
3735, 36syl6ss 3516 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  a  C_  W
)
3837biantrud 507 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( a  C_  z 
<->  ( a  C_  z  /\  a  C_  W ) ) )
39 resres 5286 . . . . . . . . . . . . . . 15  |-  ( ( F  |`  z )  |`  W )  =  ( F  |`  ( z  i^i  W ) )
4039oveq2i 6295 . . . . . . . . . . . . . 14  |-  ( G 
gsumg  ( ( F  |`  z )  |`  W ) )  =  ( G 
gsumg  ( F  |`  ( z  i^i  W ) ) )
41 tsmsres.b . . . . . . . . . . . . . . 15  |-  B  =  ( Base `  G
)
42 tsmsres.z . . . . . . . . . . . . . . 15  |-  .0.  =  ( 0g `  G )
43 tsmsres.1 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  G  e. CMnd )
4443ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
45 tsmsres.f . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  F : A --> B )
4645ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  F : A --> B )
47 fssres 5751 . . . . . . . . . . . . . . . 16  |-  ( ( F : A --> B  /\  z  C_  A )  -> 
( F  |`  z
) : z --> B )
4846, 10, 47syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  z ) : z --> B )
49 tsmsres.a . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  A  e.  V )
50 fex 6133 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F : A --> B  /\  A  e.  V )  ->  F  e.  _V )
5145, 49, 50syl2anc 661 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F  e.  _V )
5251ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  F  e.  _V )
53 fvex 5876 . . . . . . . . . . . . . . . . . 18  |-  ( 0g
`  G )  e. 
_V
5442, 53eqeltri 2551 . . . . . . . . . . . . . . . . 17  |-  .0.  e.  _V
55 ressuppss 6919 . . . . . . . . . . . . . . . . 17  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  |`  z ) supp  .0.  )  C_  ( F supp  .0.  )
)
5652, 54, 55sylancl 662 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( F  |`  z ) supp  .0.  )  C_  ( F supp  .0.  )
)
57 tsmsres.s . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( F supp  .0.  )  C_  W )
5857ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F supp  .0.  )  C_  W )
5956, 58sstrd 3514 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( F  |`  z ) supp  .0.  )  C_  W )
6054a1i 11 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  .0.  e.  _V )
6148, 14, 60fdmfifsupp 7839 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  z ) finSupp  .0.  )
6241, 42, 44, 14, 48, 59, 61gsumres 16724 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( ( F  |`  z )  |`  W ) )  =  ( G  gsumg  ( F  |`  z
) ) )
6340, 62syl5reqr 2523 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  z ) )  =  ( G  gsumg  ( F  |`  (
z  i^i  W )
) ) )
6463eleq1d 2536 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( G 
gsumg  ( F  |`  z ) )  e.  u  <->  ( G  gsumg  ( F  |`  ( z  i^i  W ) ) )  e.  u ) )
6538, 64imbi12d 320 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( ( a 
C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( ( a 
C_  z  /\  a  C_  W )  ->  ( G  gsumg  ( F  |`  (
z  i^i  W )
) )  e.  u
) ) )
6632, 65sylibrd 234 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  ( a  C_  z  ->  ( G  gsumg  ( F  |`  z )
)  e.  u ) ) )
6766ralrimdva 2882 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
68 sseq1 3525 . . . . . . . . . . . 12  |-  ( y  =  a  ->  (
y  C_  z  <->  a  C_  z ) )
6968imbi1d 317 . . . . . . . . . . 11  |-  ( y  =  a  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
7069ralbidv 2903 . . . . . . . . . 10  |-  ( y  =  a  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
7170rspcev 3214 . . . . . . . . 9  |-  ( ( a  e.  ( ~P A  i^i  Fin )  /\  A. z  e.  ( ~P A  i^i  Fin ) ( a  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) )
727, 67, 71syl6an 545 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ~P ( A  i^i  W )  i^i  Fin )
)  ->  ( A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
7372rexlimdva 2955 . . . . . . 7  |-  ( ph  ->  ( E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
74 elfpw 7822 . . . . . . . . . . . . 13  |-  ( y  e.  ( ~P A  i^i  Fin )  <->  ( y  C_  A  /\  y  e. 
Fin ) )
7574simplbi 460 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  C_  A )
7675adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  C_  A )
77 ssrin 3723 . . . . . . . . . . 11  |-  ( y 
C_  A  ->  (
y  i^i  W )  C_  ( A  i^i  W
) )
7876, 77syl 16 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  C_  ( A  i^i  W
) )
7974simprbi 464 . . . . . . . . . . . 12  |-  ( y  e.  ( ~P A  i^i  Fin )  ->  y  e.  Fin )
8079adantl 466 . . . . . . . . . . 11  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  y  e.  Fin )
81 inss1 3718 . . . . . . . . . . 11  |-  ( y  i^i  W )  C_  y
82 ssfi 7740 . . . . . . . . . . 11  |-  ( ( y  e.  Fin  /\  ( y  i^i  W
)  C_  y )  ->  ( y  i^i  W
)  e.  Fin )
8380, 81, 82sylancl 662 . . . . . . . . . 10  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  e.  Fin )
84 elfpw 7822 . . . . . . . . . 10  |-  ( ( y  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( (
y  i^i  W )  C_  ( A  i^i  W
)  /\  ( y  i^i  W )  e.  Fin ) )
8578, 83, 84sylanbrc 664 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  (
y  i^i  W )  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )
8675ad2antlr 726 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
y  C_  A )
87 elfpw 7822 . . . . . . . . . . . . . . . . 17  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  <->  ( b  C_  ( A  i^i  W
)  /\  b  e.  Fin ) )
8887simplbi 460 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  b  C_  ( A  i^i  W
) )
8988adantl 466 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  ( A  i^i  W ) )
9089, 1syl6ss 3516 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  A )
9186, 90unssd 3680 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  C_  A )
9287simprbi 464 . . . . . . . . . . . . . 14  |-  ( b  e.  ( ~P ( A  i^i  W )  i^i 
Fin )  ->  b  e.  Fin )
93 unfi 7787 . . . . . . . . . . . . . 14  |-  ( ( y  e.  Fin  /\  b  e.  Fin )  ->  ( y  u.  b
)  e.  Fin )
9480, 92, 93syl2an 477 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  e.  Fin )
95 elfpw 7822 . . . . . . . . . . . . 13  |-  ( ( y  u.  b )  e.  ( ~P A  i^i  Fin )  <->  ( (
y  u.  b ) 
C_  A  /\  (
y  u.  b )  e.  Fin ) )
9691, 94, 95sylanbrc 664 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( y  u.  b
)  e.  ( ~P A  i^i  Fin )
)
97 ssun1 3667 . . . . . . . . . . . . . . . 16  |-  y  C_  ( y  u.  b
)
98 id 22 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  b )  ->  z  =  ( y  u.  b ) )
9997, 98syl5sseqr 3553 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  b )  ->  y  C_  z )
100 pm5.5 336 . . . . . . . . . . . . . . 15  |-  ( y 
C_  z  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
10199, 100syl 16 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  b )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )
102 reseq2 5268 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( y  u.  b )  ->  ( F  |`  z )  =  ( F  |`  (
y  u.  b ) ) )
103102oveq2d 6300 . . . . . . . . . . . . . . 15  |-  ( z  =  ( y  u.  b )  ->  ( G  gsumg  ( F  |`  z
) )  =  ( G  gsumg  ( F  |`  (
y  u.  b ) ) ) )
104103eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( z  =  ( y  u.  b )  ->  (
( G  gsumg  ( F  |`  z
) )  e.  u  <->  ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u
) )
105101, 104bitrd 253 . . . . . . . . . . . . 13  |-  ( z  =  ( y  u.  b )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u ) )
106105rspcv 3210 . . . . . . . . . . . 12  |-  ( ( y  u.  b )  e.  ( ~P A  i^i  Fin )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  ( G  gsumg  ( F  |`  ( y  u.  b ) ) )  e.  u ) )
10796, 106syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u
) )
10843ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  G  e. CMnd )
10994adantrr 716 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  u.  b )  e.  Fin )
11045ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  F : A
--> B )
11191adantrr 716 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  u.  b )  C_  A
)
112 fssres 5751 . . . . . . . . . . . . . . . . . 18  |-  ( ( F : A --> B  /\  ( y  u.  b
)  C_  A )  ->  ( F  |`  (
y  u.  b ) ) : ( y  u.  b ) --> B )
113110, 111, 112syl2anc 661 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( y  u.  b
) ) : ( y  u.  b ) --> B )
11451, 54jctir 538 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( F  e.  _V  /\  .0.  e.  _V )
)
115114ad2antrr 725 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  e.  _V  /\  .0.  e.  _V ) )
116 ressuppss 6919 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  e.  _V  /\  .0.  e.  _V )  -> 
( ( F  |`  ( y  u.  b
) ) supp  .0.  )  C_  ( F supp  .0.  )
)
117115, 116syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) ) supp  .0.  )  C_  ( F supp  .0.  ) )
11857ad2antrr 725 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F supp  .0.  )  C_  W )
119117, 118sstrd 3514 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) ) supp  .0.  )  C_  W )
12054a1i 11 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  .0.  e.  _V )
121113, 109, 120fdmfifsupp 7839 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( y  u.  b
) ) finSupp  .0.  )
12241, 42, 108, 109, 113, 119, 121gsumres 16724 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( ( F  |`  (
y  u.  b ) )  |`  W )
)  =  ( G 
gsumg  ( F  |`  ( y  u.  b ) ) ) )
123 resres 5286 . . . . . . . . . . . . . . . . . . 19  |-  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( F  |`  ( (
y  u.  b )  i^i  W ) )
124 indir 3746 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( y  u.  b )  i^i  W )  =  ( ( y  i^i 
W )  u.  (
b  i^i  W )
)
12589, 36syl6ss 3516 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
b  C_  W )
126125adantrr 716 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  b  C_  W )
127 df-ss 3490 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( b 
C_  W  <->  ( b  i^i  W )  =  b )
128126, 127sylib 196 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( b  i^i  W )  =  b )
129128uneq2d 3658 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  ( b  i^i  W
) )  =  ( ( y  i^i  W
)  u.  b ) )
130 simprr 756 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( y  i^i  W )  C_  b
)
131 ssequn1 3674 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ( y  i^i  W ) 
C_  b  <->  ( (
y  i^i  W )  u.  b )  =  b )
132130, 131sylib 196 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  b )  =  b )
133129, 132eqtrd 2508 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  i^i  W )  u.  ( b  i^i  W
) )  =  b )
134124, 133syl5eq 2520 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( (
y  u.  b )  i^i  W )  =  b )
135134reseq2d 5273 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( F  |`  ( ( y  u.  b )  i^i  W
) )  =  ( F  |`  b )
)
136123, 135syl5eq 2520 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( F  |`  b )
)
137 resabs1 5302 . . . . . . . . . . . . . . . . . . 19  |-  ( b 
C_  W  ->  (
( F  |`  W )  |`  b )  =  ( F  |`  b )
)
138126, 137syl 16 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  W )  |`  b )  =  ( F  |`  b )
)
139136, 138eqtr4d 2511 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( F  |`  ( y  u.  b ) )  |`  W )  =  ( ( F  |`  W )  |`  b ) )
140139oveq2d 6300 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( ( F  |`  (
y  u.  b ) )  |`  W )
)  =  ( G 
gsumg  ( ( F  |`  W )  |`  b
) ) )
141122, 140eqtr3d 2510 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( G  gsumg  ( F  |`  ( y  u.  b ) ) )  =  ( G  gsumg  ( ( F  |`  W )  |`  b ) ) )
142141eleq1d 2536 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u  <->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
143142biimpd 207 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  (
b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  ( y  i^i  W
)  C_  b )
)  ->  ( ( G  gsumg  ( F  |`  (
y  u.  b ) ) )  e.  u  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
144143expr 615 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( ( y  i^i 
W )  C_  b  ->  ( ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
145144com23 78 . . . . . . . . . . 11  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( ( G  gsumg  ( F  |`  ( y  u.  b
) ) )  e.  u  ->  ( (
y  i^i  W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
146107, 145syld 44 . . . . . . . . . 10  |-  ( ( ( ph  /\  y  e.  ( ~P A  i^i  Fin ) )  /\  b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) )  -> 
( A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  (
( y  i^i  W
)  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
147146ralrimdva 2882 . . . . . . . . 9  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( ( y  i^i  W ) 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
148 sseq1 3525 . . . . . . . . . . . 12  |-  ( a  =  ( y  i^i 
W )  ->  (
a  C_  b  <->  ( y  i^i  W )  C_  b
) )
149148imbi1d 317 . . . . . . . . . . 11  |-  ( a  =  ( y  i^i 
W )  ->  (
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  ( ( y  i^i  W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b ) )  e.  u ) ) )
150149ralbidv 2903 . . . . . . . . . 10  |-  ( a  =  ( y  i^i 
W )  ->  ( A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin )
( ( y  i^i 
W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
151150rspcev 3214 . . . . . . . . 9  |-  ( ( ( y  i^i  W
)  e.  ( ~P ( A  i^i  W
)  i^i  Fin )  /\  A. b  e.  ( ~P ( A  i^i  W )  i^i  Fin )
( ( y  i^i 
W )  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )
15285, 147, 151syl6an 545 . . . . . . . 8  |-  ( (
ph  /\  y  e.  ( ~P A  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
153152rexlimdva 2955 . . . . . . 7  |-  ( ph  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )
15473, 153impbid 191 . . . . . 6  |-  ( ph  ->  ( E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
)  <->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
155154imbi2d 316 . . . . 5  |-  ( ph  ->  ( ( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) A. b  e.  ( ~P ( A  i^i  W )  i^i 
Fin ) ( a 
C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  <->  ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) )
156155ralbidv 2903 . . . 4  |-  ( ph  ->  ( A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) )
157156anbi2d 703 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
158 eqid 2467 . . . 4  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
159 eqid 2467 . . . 4  |-  ( ~P ( A  i^i  W
)  i^i  Fin )  =  ( ~P ( A  i^i  W )  i^i 
Fin )
160 tsmsres.2 . . . 4  |-  ( ph  ->  G  e.  TopSp )
161 inex1g 4590 . . . . 5  |-  ( A  e.  V  ->  ( A  i^i  W )  e. 
_V )
16249, 161syl 16 . . . 4  |-  ( ph  ->  ( A  i^i  W
)  e.  _V )
163 fssres 5751 . . . . . 6  |-  ( ( F : A --> B  /\  ( A  i^i  W ) 
C_  A )  -> 
( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
16445, 1, 163sylancl 662 . . . . 5  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B )
165 resres 5286 . . . . . . 7  |-  ( ( F  |`  A )  |`  W )  =  ( F  |`  ( A  i^i  W ) )
166 ffn 5731 . . . . . . . . 9  |-  ( F : A --> B  ->  F  Fn  A )
167 fnresdm 5690 . . . . . . . . 9  |-  ( F  Fn  A  ->  ( F  |`  A )  =  F )
16845, 166, 1673syl 20 . . . . . . . 8  |-  ( ph  ->  ( F  |`  A )  =  F )
169168reseq1d 5272 . . . . . . 7  |-  ( ph  ->  ( ( F  |`  A )  |`  W )  =  ( F  |`  W ) )
170165, 169syl5eqr 2522 . . . . . 6  |-  ( ph  ->  ( F  |`  ( A  i^i  W ) )  =  ( F  |`  W ) )
171170feq1d 5717 . . . . 5  |-  ( ph  ->  ( ( F  |`  ( A  i^i  W ) ) : ( A  i^i  W ) --> B  <-> 
( F  |`  W ) : ( A  i^i  W ) --> B ) )
172164, 171mpbid 210 . . . 4  |-  ( ph  ->  ( F  |`  W ) : ( A  i^i  W ) --> B )
17341, 158, 159, 43, 160, 162, 172eltsms 20394 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  |`  W ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P ( A  i^i  W )  i^i  Fin ) A. b  e.  ( ~P ( A  i^i  W
)  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  |`  W )  |`  b
) )  e.  u
) ) ) ) )
174 eqid 2467 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
17541, 158, 174, 43, 160, 49, 45eltsms 20394 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
176157, 173, 1753bitr4d 285 . 2  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  |`  W ) )  <->  x  e.  ( G tsums  F ) ) )
177176eqrdv 2464 1  |-  ( ph  ->  ( G tsums  ( F  |`  W ) )  =  ( G tsums  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1379    e. wcel 1767   A.wral 2814   E.wrex 2815   _Vcvv 3113    u. cun 3474    i^i cin 3475    C_ wss 3476   ~Pcpw 4010    |` cres 5001    Fn wfn 5583   -->wf 5584   ` cfv 5588  (class class class)co 6284   supp csupp 6901   Fincfn 7516   Basecbs 14490   TopOpenctopn 14677   0gc0g 14695    gsumg cgsu 14696  CMndccmn 16604   TopSpctps 19192   tsums ctsu 20387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6576  ax-cnex 9548  ax-resscn 9549  ax-1cn 9550  ax-icn 9551  ax-addcl 9552  ax-addrcl 9553  ax-mulcl 9554  ax-mulrcl 9555  ax-mulcom 9556  ax-addass 9557  ax-mulass 9558  ax-distr 9559  ax-i2m1 9560  ax-1ne0 9561  ax-1rid 9562  ax-rnegex 9563  ax-rrecex 9564  ax-cnre 9565  ax-pre-lttri 9566  ax-pre-lttrn 9567  ax-pre-ltadd 9568  ax-pre-mulgt0 9569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-se 4839  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5551  df-fun 5590  df-fn 5591  df-f 5592  df-f1 5593  df-fo 5594  df-f1o 5595  df-fv 5596  df-isom 5597  df-riota 6245  df-ov 6287  df-oprab 6288  df-mpt2 6289  df-om 6685  df-1st 6784  df-2nd 6785  df-supp 6902  df-recs 7042  df-rdg 7076  df-1o 7130  df-oadd 7134  df-er 7311  df-map 7422  df-en 7517  df-dom 7518  df-sdom 7519  df-fin 7520  df-fsupp 7830  df-oi 7935  df-card 8320  df-pnf 9630  df-mnf 9631  df-xr 9632  df-ltxr 9633  df-le 9634  df-sub 9807  df-neg 9808  df-nn 10537  df-n0 10796  df-z 10865  df-uz 11083  df-fz 11673  df-fzo 11793  df-seq 12076  df-hash 12374  df-0g 14697  df-gsum 14698  df-mnd 15732  df-cntz 16160  df-cmn 16606  df-fbas 18215  df-fg 18216  df-top 19194  df-topon 19197  df-topsp 19198  df-ntr 19315  df-nei 19393  df-fil 20110  df-fm 20202  df-flim 20203  df-flf 20204  df-tsms 20388
This theorem is referenced by:  tsmssplit  20417
  Copyright terms: Public domain W3C validator