MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsfbas Structured version   Unicode version

Theorem tsmsfbas 19703
Description: The collection of all sets of the form  F ( z )  =  { y  e.  S  |  z 
C_  y }, which can be read as the set of all finite subsets of  A which contain  z as a subset, for each finite subset  z of  A, form a filter base. (Contributed by Mario Carneiro, 2-Sep-2015.)
Hypotheses
Ref Expression
tsmsfbas.s  |-  S  =  ( ~P A  i^i  Fin )
tsmsfbas.f  |-  F  =  ( z  e.  S  |->  { y  e.  S  |  z  C_  y } )
tsmsfbas.l  |-  L  =  ran  F
tsmsfbas.a  |-  ( ph  ->  A  e.  W )
Assertion
Ref Expression
tsmsfbas  |-  ( ph  ->  L  e.  ( fBas `  S ) )
Distinct variable groups:    z, A    y, z, S
Allowed substitution hints:    ph( y, z)    A( y)    F( y, z)    L( y, z)    W( y, z)

Proof of Theorem tsmsfbas
Dummy variables  u  a  v  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsfbas.a . 2  |-  ( ph  ->  A  e.  W )
2 elex 2986 . 2  |-  ( A  e.  W  ->  A  e.  _V )
3 tsmsfbas.l . . 3  |-  L  =  ran  F
4 ssrab2 3442 . . . . . . 7  |-  { y  e.  S  |  z 
C_  y }  C_  S
5 tsmsfbas.s . . . . . . . . . 10  |-  S  =  ( ~P A  i^i  Fin )
6 pwexg 4481 . . . . . . . . . . 11  |-  ( A  e.  _V  ->  ~P A  e.  _V )
7 inex1g 4440 . . . . . . . . . . 11  |-  ( ~P A  e.  _V  ->  ( ~P A  i^i  Fin )  e.  _V )
86, 7syl 16 . . . . . . . . . 10  |-  ( A  e.  _V  ->  ( ~P A  i^i  Fin )  e.  _V )
95, 8syl5eqel 2527 . . . . . . . . 9  |-  ( A  e.  _V  ->  S  e.  _V )
109adantr 465 . . . . . . . 8  |-  ( ( A  e.  _V  /\  z  e.  S )  ->  S  e.  _V )
11 elpw2g 4460 . . . . . . . 8  |-  ( S  e.  _V  ->  ( { y  e.  S  |  z  C_  y }  e.  ~P S  <->  { y  e.  S  |  z  C_  y }  C_  S
) )
1210, 11syl 16 . . . . . . 7  |-  ( ( A  e.  _V  /\  z  e.  S )  ->  ( { y  e.  S  |  z  C_  y }  e.  ~P S 
<->  { y  e.  S  |  z  C_  y } 
C_  S ) )
134, 12mpbiri 233 . . . . . 6  |-  ( ( A  e.  _V  /\  z  e.  S )  ->  { y  e.  S  |  z  C_  y }  e.  ~P S )
14 tsmsfbas.f . . . . . 6  |-  F  =  ( z  e.  S  |->  { y  e.  S  |  z  C_  y } )
1513, 14fmptd 5872 . . . . 5  |-  ( A  e.  _V  ->  F : S --> ~P S )
16 frn 5570 . . . . 5  |-  ( F : S --> ~P S  ->  ran  F  C_  ~P S )
1715, 16syl 16 . . . 4  |-  ( A  e.  _V  ->  ran  F 
C_  ~P S )
18 0ss 3671 . . . . . . . . . 10  |-  (/)  C_  A
19 0fin 7545 . . . . . . . . . 10  |-  (/)  e.  Fin
20 elfpw 7618 . . . . . . . . . 10  |-  ( (/)  e.  ( ~P A  i^i  Fin )  <->  ( (/)  C_  A  /\  (/)  e.  Fin )
)
2118, 19, 20mpbir2an 911 . . . . . . . . 9  |-  (/)  e.  ( ~P A  i^i  Fin )
2221, 5eleqtrri 2516 . . . . . . . 8  |-  (/)  e.  S
23 0ss 3671 . . . . . . . . 9  |-  (/)  C_  y
2423rgenw 2788 . . . . . . . 8  |-  A. y  e.  S  (/)  C_  y
25 rabid2 2903 . . . . . . . . . 10  |-  ( S  =  { y  e.  S  |  z  C_  y }  <->  A. y  e.  S  z  C_  y )
26 sseq1 3382 . . . . . . . . . . 11  |-  ( z  =  (/)  ->  ( z 
C_  y  <->  (/)  C_  y
) )
2726ralbidv 2740 . . . . . . . . . 10  |-  ( z  =  (/)  ->  ( A. y  e.  S  z  C_  y  <->  A. y  e.  S  (/)  C_  y ) )
2825, 27syl5bb 257 . . . . . . . . 9  |-  ( z  =  (/)  ->  ( S  =  { y  e.  S  |  z  C_  y }  <->  A. y  e.  S  (/)  C_  y ) )
2928rspcev 3078 . . . . . . . 8  |-  ( (
(/)  e.  S  /\  A. y  e.  S  (/)  C_  y )  ->  E. z  e.  S  S  =  { y  e.  S  |  z  C_  y } )
3022, 24, 29mp2an 672 . . . . . . 7  |-  E. z  e.  S  S  =  { y  e.  S  |  z  C_  y }
3114elrnmpt 5091 . . . . . . . 8  |-  ( S  e.  _V  ->  ( S  e.  ran  F  <->  E. z  e.  S  S  =  { y  e.  S  |  z  C_  y } ) )
329, 31syl 16 . . . . . . 7  |-  ( A  e.  _V  ->  ( S  e.  ran  F  <->  E. z  e.  S  S  =  { y  e.  S  |  z  C_  y } ) )
3330, 32mpbiri 233 . . . . . 6  |-  ( A  e.  _V  ->  S  e.  ran  F )
34 ne0i 3648 . . . . . 6  |-  ( S  e.  ran  F  ->  ran  F  =/=  (/) )
3533, 34syl 16 . . . . 5  |-  ( A  e.  _V  ->  ran  F  =/=  (/) )
36 simpr 461 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  z  e.  S )  ->  z  e.  S )
37 ssid 3380 . . . . . . . . . . . 12  |-  z  C_  z
38 sseq2 3383 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  (
z  C_  y  <->  z  C_  z ) )
3938rspcev 3078 . . . . . . . . . . . 12  |-  ( ( z  e.  S  /\  z  C_  z )  ->  E. y  e.  S  z  C_  y )
4036, 37, 39sylancl 662 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  z  e.  S )  ->  E. y  e.  S  z  C_  y )
41 rabn0 3662 . . . . . . . . . . 11  |-  ( { y  e.  S  | 
z  C_  y }  =/=  (/)  <->  E. y  e.  S  z  C_  y )
4240, 41sylibr 212 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  z  e.  S )  ->  { y  e.  S  |  z  C_  y }  =/=  (/) )
4342necomd 2700 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  z  e.  S )  -> 
(/)  =/=  { y  e.  S  |  z  C_  y } )
4443neneqd 2629 . . . . . . . 8  |-  ( ( A  e.  _V  /\  z  e.  S )  ->  -.  (/)  =  { y  e.  S  |  z 
C_  y } )
4544nrexdv 2824 . . . . . . 7  |-  ( A  e.  _V  ->  -.  E. z  e.  S  (/)  =  { y  e.  S  |  z  C_  y } )
46 0ex 4427 . . . . . . . 8  |-  (/)  e.  _V
4714elrnmpt 5091 . . . . . . . 8  |-  ( (/)  e.  _V  ->  ( (/)  e.  ran  F  <->  E. z  e.  S  (/)  =  { y  e.  S  |  z  C_  y } ) )
4846, 47ax-mp 5 . . . . . . 7  |-  ( (/)  e.  ran  F  <->  E. z  e.  S  (/)  =  {
y  e.  S  | 
z  C_  y }
)
4945, 48sylnibr 305 . . . . . 6  |-  ( A  e.  _V  ->  -.  (/) 
e.  ran  F )
50 df-nel 2614 . . . . . 6  |-  ( (/)  e/ 
ran  F  <->  -.  (/)  e.  ran  F )
5149, 50sylibr 212 . . . . 5  |-  ( A  e.  _V  ->  (/)  e/  ran  F )
52 elfpw 7618 . . . . . . . . . . . . . . . . . 18  |-  ( u  e.  ( ~P A  i^i  Fin )  <->  ( u  C_  A  /\  u  e. 
Fin ) )
5352simplbi 460 . . . . . . . . . . . . . . . . 17  |-  ( u  e.  ( ~P A  i^i  Fin )  ->  u  C_  A )
5453, 5eleq2s 2535 . . . . . . . . . . . . . . . 16  |-  ( u  e.  S  ->  u  C_  A )
55 elfpw 7618 . . . . . . . . . . . . . . . . . 18  |-  ( v  e.  ( ~P A  i^i  Fin )  <->  ( v  C_  A  /\  v  e. 
Fin ) )
5655simplbi 460 . . . . . . . . . . . . . . . . 17  |-  ( v  e.  ( ~P A  i^i  Fin )  ->  v  C_  A )
5756, 5eleq2s 2535 . . . . . . . . . . . . . . . 16  |-  ( v  e.  S  ->  v  C_  A )
5854, 57anim12i 566 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  S  /\  v  e.  S )  ->  ( u  C_  A  /\  v  C_  A ) )
59 unss 3535 . . . . . . . . . . . . . . 15  |-  ( ( u  C_  A  /\  v  C_  A )  <->  ( u  u.  v )  C_  A
)
6058, 59sylib 196 . . . . . . . . . . . . . 14  |-  ( ( u  e.  S  /\  v  e.  S )  ->  ( u  u.  v
)  C_  A )
6152simprbi 464 . . . . . . . . . . . . . . . 16  |-  ( u  e.  ( ~P A  i^i  Fin )  ->  u  e.  Fin )
6261, 5eleq2s 2535 . . . . . . . . . . . . . . 15  |-  ( u  e.  S  ->  u  e.  Fin )
6355simprbi 464 . . . . . . . . . . . . . . . 16  |-  ( v  e.  ( ~P A  i^i  Fin )  ->  v  e.  Fin )
6463, 5eleq2s 2535 . . . . . . . . . . . . . . 15  |-  ( v  e.  S  ->  v  e.  Fin )
65 unfi 7584 . . . . . . . . . . . . . . 15  |-  ( ( u  e.  Fin  /\  v  e.  Fin )  ->  ( u  u.  v
)  e.  Fin )
6662, 64, 65syl2an 477 . . . . . . . . . . . . . 14  |-  ( ( u  e.  S  /\  v  e.  S )  ->  ( u  u.  v
)  e.  Fin )
67 elfpw 7618 . . . . . . . . . . . . . 14  |-  ( ( u  u.  v )  e.  ( ~P A  i^i  Fin )  <->  ( (
u  u.  v ) 
C_  A  /\  (
u  u.  v )  e.  Fin ) )
6860, 66, 67sylanbrc 664 . . . . . . . . . . . . 13  |-  ( ( u  e.  S  /\  v  e.  S )  ->  ( u  u.  v
)  e.  ( ~P A  i^i  Fin )
)
6968adantl 466 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  (
u  u.  v )  e.  ( ~P A  i^i  Fin ) )
7069, 5syl6eleqr 2534 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  (
u  u.  v )  e.  S )
71 eqidd 2444 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  { y  e.  S  |  ( u  u.  v ) 
C_  y }  =  { y  e.  S  |  ( u  u.  v )  C_  y } )
72 sseq1 3382 . . . . . . . . . . . . . 14  |-  ( a  =  ( u  u.  v )  ->  (
a  C_  y  <->  ( u  u.  v )  C_  y
) )
7372rabbidv 2969 . . . . . . . . . . . . 13  |-  ( a  =  ( u  u.  v )  ->  { y  e.  S  |  a 
C_  y }  =  { y  e.  S  |  ( u  u.  v )  C_  y } )
7473eqeq2d 2454 . . . . . . . . . . . 12  |-  ( a  =  ( u  u.  v )  ->  ( { y  e.  S  |  ( u  u.  v )  C_  y }  =  { y  e.  S  |  a  C_  y }  <->  { y  e.  S  |  (
u  u.  v ) 
C_  y }  =  { y  e.  S  |  ( u  u.  v )  C_  y } ) )
7574rspcev 3078 . . . . . . . . . . 11  |-  ( ( ( u  u.  v
)  e.  S  /\  { y  e.  S  | 
( u  u.  v
)  C_  y }  =  { y  e.  S  |  ( u  u.  v )  C_  y } )  ->  E. a  e.  S  { y  e.  S  |  (
u  u.  v ) 
C_  y }  =  { y  e.  S  |  a  C_  y } )
7670, 71, 75syl2anc 661 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  E. a  e.  S  { y  e.  S  |  (
u  u.  v ) 
C_  y }  =  { y  e.  S  |  a  C_  y } )
779adantr 465 . . . . . . . . . . . 12  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  S  e.  _V )
78 rabexg 4447 . . . . . . . . . . . 12  |-  ( S  e.  _V  ->  { y  e.  S  |  ( u  u.  v ) 
C_  y }  e.  _V )
7977, 78syl 16 . . . . . . . . . . 11  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  { y  e.  S  |  ( u  u.  v ) 
C_  y }  e.  _V )
80 sseq1 3382 . . . . . . . . . . . . . . 15  |-  ( z  =  a  ->  (
z  C_  y  <->  a  C_  y ) )
8180rabbidv 2969 . . . . . . . . . . . . . 14  |-  ( z  =  a  ->  { y  e.  S  |  z 
C_  y }  =  { y  e.  S  |  a  C_  y } )
8281cbvmptv 4388 . . . . . . . . . . . . 13  |-  ( z  e.  S  |->  { y  e.  S  |  z 
C_  y } )  =  ( a  e.  S  |->  { y  e.  S  |  a  C_  y } )
8314, 82eqtri 2463 . . . . . . . . . . . 12  |-  F  =  ( a  e.  S  |->  { y  e.  S  |  a  C_  y } )
8483elrnmpt 5091 . . . . . . . . . . 11  |-  ( { y  e.  S  | 
( u  u.  v
)  C_  y }  e.  _V  ->  ( {
y  e.  S  | 
( u  u.  v
)  C_  y }  e.  ran  F  <->  E. a  e.  S  { y  e.  S  |  (
u  u.  v ) 
C_  y }  =  { y  e.  S  |  a  C_  y } ) )
8579, 84syl 16 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  ( { y  e.  S  |  ( u  u.  v )  C_  y }  e.  ran  F  <->  E. a  e.  S  { y  e.  S  |  (
u  u.  v ) 
C_  y }  =  { y  e.  S  |  a  C_  y } ) )
8676, 85mpbird 232 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  { y  e.  S  |  ( u  u.  v ) 
C_  y }  e.  ran  F )
87 pwidg 3878 . . . . . . . . . 10  |-  ( { y  e.  S  | 
( u  u.  v
)  C_  y }  e.  _V  ->  { y  e.  S  |  (
u  u.  v ) 
C_  y }  e.  ~P { y  e.  S  |  ( u  u.  v )  C_  y } )
8879, 87syl 16 . . . . . . . . 9  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  { y  e.  S  |  ( u  u.  v ) 
C_  y }  e.  ~P { y  e.  S  |  ( u  u.  v )  C_  y } )
89 inelcm 3738 . . . . . . . . 9  |-  ( ( { y  e.  S  |  ( u  u.  v )  C_  y }  e.  ran  F  /\  { y  e.  S  | 
( u  u.  v
)  C_  y }  e.  ~P { y  e.  S  |  ( u  u.  v )  C_  y } )  ->  ( ran  F  i^i  ~P {
y  e.  S  | 
( u  u.  v
)  C_  y }
)  =/=  (/) )
9086, 88, 89syl2anc 661 . . . . . . . 8  |-  ( ( A  e.  _V  /\  ( u  e.  S  /\  v  e.  S
) )  ->  ( ran  F  i^i  ~P {
y  e.  S  | 
( u  u.  v
)  C_  y }
)  =/=  (/) )
9190ralrimivva 2813 . . . . . . 7  |-  ( A  e.  _V  ->  A. u  e.  S  A. v  e.  S  ( ran  F  i^i  ~P { y  e.  S  |  ( u  u.  v ) 
C_  y } )  =/=  (/) )
92 rabexg 4447 . . . . . . . . . 10  |-  ( S  e.  _V  ->  { y  e.  S  |  u 
C_  y }  e.  _V )
939, 92syl 16 . . . . . . . . 9  |-  ( A  e.  _V  ->  { y  e.  S  |  u 
C_  y }  e.  _V )
9493ralrimivw 2805 . . . . . . . 8  |-  ( A  e.  _V  ->  A. u  e.  S  { y  e.  S  |  u  C_  y }  e.  _V )
95 sseq1 3382 . . . . . . . . . . . 12  |-  ( z  =  u  ->  (
z  C_  y  <->  u  C_  y
) )
9695rabbidv 2969 . . . . . . . . . . 11  |-  ( z  =  u  ->  { y  e.  S  |  z 
C_  y }  =  { y  e.  S  |  u  C_  y } )
9796cbvmptv 4388 . . . . . . . . . 10  |-  ( z  e.  S  |->  { y  e.  S  |  z 
C_  y } )  =  ( u  e.  S  |->  { y  e.  S  |  u  C_  y } )
9814, 97eqtri 2463 . . . . . . . . 9  |-  F  =  ( u  e.  S  |->  { y  e.  S  |  u  C_  y } )
99 ineq1 3550 . . . . . . . . . . . . . 14  |-  ( a  =  { y  e.  S  |  u  C_  y }  ->  ( a  i^i  { y  e.  S  |  v  C_  y } )  =  ( { y  e.  S  |  u  C_  y }  i^i  { y  e.  S  |  v  C_  y } ) )
100 inrab 3627 . . . . . . . . . . . . . . 15  |-  ( { y  e.  S  |  u  C_  y }  i^i  { y  e.  S  | 
v  C_  y }
)  =  { y  e.  S  |  ( u  C_  y  /\  v  C_  y ) }
101 unss 3535 . . . . . . . . . . . . . . . . 17  |-  ( ( u  C_  y  /\  v  C_  y )  <->  ( u  u.  v )  C_  y
)
102101a1i 11 . . . . . . . . . . . . . . . 16  |-  ( y  e.  S  ->  (
( u  C_  y  /\  v  C_  y )  <-> 
( u  u.  v
)  C_  y )
)
103102rabbiia 2966 . . . . . . . . . . . . . . 15  |-  { y  e.  S  |  ( u  C_  y  /\  v  C_  y ) }  =  { y  e.  S  |  ( u  u.  v )  C_  y }
104100, 103eqtri 2463 . . . . . . . . . . . . . 14  |-  ( { y  e.  S  |  u  C_  y }  i^i  { y  e.  S  | 
v  C_  y }
)  =  { y  e.  S  |  ( u  u.  v ) 
C_  y }
10599, 104syl6eq 2491 . . . . . . . . . . . . 13  |-  ( a  =  { y  e.  S  |  u  C_  y }  ->  ( a  i^i  { y  e.  S  |  v  C_  y } )  =  {
y  e.  S  | 
( u  u.  v
)  C_  y }
)
106105pweqd 3870 . . . . . . . . . . . 12  |-  ( a  =  { y  e.  S  |  u  C_  y }  ->  ~P (
a  i^i  { y  e.  S  |  v  C_  y } )  =  ~P { y  e.  S  |  ( u  u.  v )  C_  y } )
107106ineq2d 3557 . . . . . . . . . . 11  |-  ( a  =  { y  e.  S  |  u  C_  y }  ->  ( ran 
F  i^i  ~P (
a  i^i  { y  e.  S  |  v  C_  y } ) )  =  ( ran  F  i^i  ~P { y  e.  S  |  ( u  u.  v )  C_  y } ) )
108107neeq1d 2626 . . . . . . . . . 10  |-  ( a  =  { y  e.  S  |  u  C_  y }  ->  ( ( ran  F  i^i  ~P ( a  i^i  {
y  e.  S  | 
v  C_  y }
) )  =/=  (/)  <->  ( ran  F  i^i  ~P { y  e.  S  |  ( u  u.  v ) 
C_  y } )  =/=  (/) ) )
109108ralbidv 2740 . . . . . . . . 9  |-  ( a  =  { y  e.  S  |  u  C_  y }  ->  ( A. v  e.  S  ( ran  F  i^i  ~P (
a  i^i  { y  e.  S  |  v  C_  y } ) )  =/=  (/)  <->  A. v  e.  S  ( ran  F  i^i  ~P { y  e.  S  |  ( u  u.  v )  C_  y } )  =/=  (/) ) )
11098, 109ralrnmpt 5857 . . . . . . . 8  |-  ( A. u  e.  S  {
y  e.  S  |  u  C_  y }  e.  _V  ->  ( A. a  e.  ran  F A. v  e.  S  ( ran  F  i^i  ~P ( a  i^i  { y  e.  S  |  v  C_  y } ) )  =/=  (/) 
<-> 
A. u  e.  S  A. v  e.  S  ( ran  F  i^i  ~P { y  e.  S  |  ( u  u.  v )  C_  y } )  =/=  (/) ) )
11194, 110syl 16 . . . . . . 7  |-  ( A  e.  _V  ->  ( A. a  e.  ran  F A. v  e.  S  ( ran  F  i^i  ~P ( a  i^i  {
y  e.  S  | 
v  C_  y }
) )  =/=  (/)  <->  A. u  e.  S  A. v  e.  S  ( ran  F  i^i  ~P { y  e.  S  |  ( u  u.  v ) 
C_  y } )  =/=  (/) ) )
11291, 111mpbird 232 . . . . . 6  |-  ( A  e.  _V  ->  A. a  e.  ran  F A. v  e.  S  ( ran  F  i^i  ~P ( a  i^i  { y  e.  S  |  v  C_  y } ) )  =/=  (/) )
113 rabexg 4447 . . . . . . . . . 10  |-  ( S  e.  _V  ->  { y  e.  S  |  v 
C_  y }  e.  _V )
1149, 113syl 16 . . . . . . . . 9  |-  ( A  e.  _V  ->  { y  e.  S  |  v 
C_  y }  e.  _V )
115114ralrimivw 2805 . . . . . . . 8  |-  ( A  e.  _V  ->  A. v  e.  S  { y  e.  S  |  v  C_  y }  e.  _V )
116 sseq1 3382 . . . . . . . . . . . 12  |-  ( z  =  v  ->  (
z  C_  y  <->  v  C_  y ) )
117116rabbidv 2969 . . . . . . . . . . 11  |-  ( z  =  v  ->  { y  e.  S  |  z 
C_  y }  =  { y  e.  S  |  v  C_  y } )
118117cbvmptv 4388 . . . . . . . . . 10  |-  ( z  e.  S  |->  { y  e.  S  |  z 
C_  y } )  =  ( v  e.  S  |->  { y  e.  S  |  v  C_  y } )
11914, 118eqtri 2463 . . . . . . . . 9  |-  F  =  ( v  e.  S  |->  { y  e.  S  |  v  C_  y } )
120 ineq2 3551 . . . . . . . . . . . 12  |-  ( b  =  { y  e.  S  |  v  C_  y }  ->  ( a  i^i  b )  =  ( a  i^i  {
y  e.  S  | 
v  C_  y }
) )
121120pweqd 3870 . . . . . . . . . . 11  |-  ( b  =  { y  e.  S  |  v  C_  y }  ->  ~P (
a  i^i  b )  =  ~P ( a  i^i 
{ y  e.  S  |  v  C_  y } ) )
122121ineq2d 3557 . . . . . . . . . 10  |-  ( b  =  { y  e.  S  |  v  C_  y }  ->  ( ran 
F  i^i  ~P (
a  i^i  b )
)  =  ( ran 
F  i^i  ~P (
a  i^i  { y  e.  S  |  v  C_  y } ) ) )
123122neeq1d 2626 . . . . . . . . 9  |-  ( b  =  { y  e.  S  |  v  C_  y }  ->  ( ( ran  F  i^i  ~P ( a  i^i  b
) )  =/=  (/)  <->  ( ran  F  i^i  ~P ( a  i^i  { y  e.  S  |  v  C_  y } ) )  =/=  (/) ) )
124119, 123ralrnmpt 5857 . . . . . . . 8  |-  ( A. v  e.  S  {
y  e.  S  | 
v  C_  y }  e.  _V  ->  ( A. b  e.  ran  F ( ran  F  i^i  ~P ( a  i^i  b
) )  =/=  (/)  <->  A. v  e.  S  ( ran  F  i^i  ~P ( a  i^i  { y  e.  S  |  v  C_  y } ) )  =/=  (/) ) )
125115, 124syl 16 . . . . . . 7  |-  ( A  e.  _V  ->  ( A. b  e.  ran  F ( ran  F  i^i  ~P ( a  i^i  b
) )  =/=  (/)  <->  A. v  e.  S  ( ran  F  i^i  ~P ( a  i^i  { y  e.  S  |  v  C_  y } ) )  =/=  (/) ) )
126125ralbidv 2740 . . . . . 6  |-  ( A  e.  _V  ->  ( A. a  e.  ran  F A. b  e.  ran  F ( ran  F  i^i  ~P ( a  i^i  b
) )  =/=  (/)  <->  A. a  e.  ran  F A. v  e.  S  ( ran  F  i^i  ~P ( a  i^i  { y  e.  S  |  v  C_  y } ) )  =/=  (/) ) )
127112, 126mpbird 232 . . . . 5  |-  ( A  e.  _V  ->  A. a  e.  ran  F A. b  e.  ran  F ( ran 
F  i^i  ~P (
a  i^i  b )
)  =/=  (/) )
12835, 51, 1273jca 1168 . . . 4  |-  ( A  e.  _V  ->  ( ran  F  =/=  (/)  /\  (/)  e/  ran  F  /\  A. a  e. 
ran  F A. b  e.  ran  F ( ran 
F  i^i  ~P (
a  i^i  b )
)  =/=  (/) ) )
129 isfbas 19407 . . . . 5  |-  ( S  e.  _V  ->  ( ran  F  e.  ( fBas `  S )  <->  ( ran  F 
C_  ~P S  /\  ( ran  F  =/=  (/)  /\  (/)  e/  ran  F  /\  A. a  e. 
ran  F A. b  e.  ran  F ( ran 
F  i^i  ~P (
a  i^i  b )
)  =/=  (/) ) ) ) )
1309, 129syl 16 . . . 4  |-  ( A  e.  _V  ->  ( ran  F  e.  ( fBas `  S )  <->  ( ran  F 
C_  ~P S  /\  ( ran  F  =/=  (/)  /\  (/)  e/  ran  F  /\  A. a  e. 
ran  F A. b  e.  ran  F ( ran 
F  i^i  ~P (
a  i^i  b )
)  =/=  (/) ) ) ) )
13117, 128, 130mpbir2and 913 . . 3  |-  ( A  e.  _V  ->  ran  F  e.  ( fBas `  S
) )
1323, 131syl5eqel 2527 . 2  |-  ( A  e.  _V  ->  L  e.  ( fBas `  S
) )
1331, 2, 1323syl 20 1  |-  ( ph  ->  L  e.  ( fBas `  S ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2611    e/ wnel 2612   A.wral 2720   E.wrex 2721   {crab 2724   _Vcvv 2977    u. cun 3331    i^i cin 3332    C_ wss 3333   (/)c0 3642   ~Pcpw 3865    e. cmpt 4355   ran crn 4846   -->wf 5419   ` cfv 5423   Fincfn 7315   fBascfbas 17809
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-nel 2614  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-int 4134  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-ov 6099  df-oprab 6100  df-mpt2 6101  df-om 6482  df-recs 6837  df-rdg 6871  df-oadd 6929  df-er 7106  df-en 7316  df-fin 7319  df-fbas 17819
This theorem is referenced by:  eltsms  19708  haustsms  19711  tsmscls  19713  tsmsmhm  19725  tsmsadd  19726
  Copyright terms: Public domain W3C validator