MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsf1o Structured version   Unicode version

Theorem tsmsf1o 21143
Description: Re-index an infinite group sum using a bijection. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
tsmsf1o.b  |-  B  =  ( Base `  G
)
tsmsf1o.1  |-  ( ph  ->  G  e. CMnd )
tsmsf1o.2  |-  ( ph  ->  G  e.  TopSp )
tsmsf1o.a  |-  ( ph  ->  A  e.  V )
tsmsf1o.f  |-  ( ph  ->  F : A --> B )
tsmsf1o.s  |-  ( ph  ->  H : C -1-1-onto-> A )
Assertion
Ref Expression
tsmsf1o  |-  ( ph  ->  ( G tsums  F )  =  ( G tsums  ( F  o.  H )
) )

Proof of Theorem tsmsf1o
Dummy variables  a 
b  u  y  z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsf1o.s . . . . . . . . . . 11  |-  ( ph  ->  H : C -1-1-onto-> A )
2 f1opwfi 7880 . . . . . . . . . . 11  |-  ( H : C -1-1-onto-> A  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) -1-1-onto-> ( ~P A  i^i  Fin ) )
31, 2syl 17 . . . . . . . . . 10  |-  ( ph  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) -1-1-onto-> ( ~P A  i^i  Fin ) )
4 f1of 5827 . . . . . . . . . 10  |-  ( ( a  e.  ( ~P C  i^i  Fin )  |->  ( H " a
) ) : ( ~P C  i^i  Fin )
-1-1-onto-> ( ~P A  i^i  Fin )  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) --> ( ~P A  i^i  Fin ) )
53, 4syl 17 . . . . . . . . 9  |-  ( ph  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) --> ( ~P A  i^i  Fin ) )
6 eqid 2422 . . . . . . . . . 10  |-  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H
" a ) )  =  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) )
76fmpt 6054 . . . . . . . . 9  |-  ( A. a  e.  ( ~P C  i^i  Fin ) ( H " a )  e.  ( ~P A  i^i  Fin )  <->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) --> ( ~P A  i^i  Fin ) )
85, 7sylibr 215 . . . . . . . 8  |-  ( ph  ->  A. a  e.  ( ~P C  i^i  Fin ) ( H "
a )  e.  ( ~P A  i^i  Fin ) )
9 sseq1 3485 . . . . . . . . . . 11  |-  ( y  =  ( H "
a )  ->  (
y  C_  z  <->  ( H " a )  C_  z
) )
109imbi1d 318 . . . . . . . . . 10  |-  ( y  =  ( H "
a )  ->  (
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
1110ralbidv 2864 . . . . . . . . 9  |-  ( y  =  ( H "
a )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
126, 11rexrnmpt 6043 . . . . . . . 8  |-  ( A. a  e.  ( ~P C  i^i  Fin ) ( H " a )  e.  ( ~P A  i^i  Fin )  ->  ( E. y  e.  ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  E. a  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
138, 12syl 17 . . . . . . 7  |-  ( ph  ->  ( E. y  e. 
ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  E. a  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
14 f1ofo 5834 . . . . . . . . 9  |-  ( ( a  e.  ( ~P C  i^i  Fin )  |->  ( H " a
) ) : ( ~P C  i^i  Fin )
-1-1-onto-> ( ~P A  i^i  Fin )  ->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) -onto-> ( ~P A  i^i  Fin ) )
15 forn 5809 . . . . . . . . 9  |-  ( ( a  e.  ( ~P C  i^i  Fin )  |->  ( H " a
) ) : ( ~P C  i^i  Fin ) -onto-> ( ~P A  i^i  Fin )  ->  ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) )  =  ( ~P A  i^i  Fin ) )
163, 14, 153syl 18 . . . . . . . 8  |-  ( ph  ->  ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) )  =  ( ~P A  i^i  Fin ) )
1716rexeqdv 3032 . . . . . . 7  |-  ( ph  ->  ( E. y  e. 
ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
18 imaeq2 5179 . . . . . . . . . . . . . . 15  |-  ( a  =  b  ->  ( H " a )  =  ( H " b
) )
1918cbvmptv 4513 . . . . . . . . . . . . . 14  |-  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H
" a ) )  =  ( b  e.  ( ~P C  i^i  Fin )  |->  ( H "
b ) )
2019fmpt 6054 . . . . . . . . . . . . 13  |-  ( A. b  e.  ( ~P C  i^i  Fin ) ( H " b )  e.  ( ~P A  i^i  Fin )  <->  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) : ( ~P C  i^i  Fin ) --> ( ~P A  i^i  Fin ) )
215, 20sylibr 215 . . . . . . . . . . . 12  |-  ( ph  ->  A. b  e.  ( ~P C  i^i  Fin ) ( H "
b )  e.  ( ~P A  i^i  Fin ) )
22 sseq2 3486 . . . . . . . . . . . . . 14  |-  ( z  =  ( H "
b )  ->  (
( H " a
)  C_  z  <->  ( H " a )  C_  ( H " b ) ) )
23 reseq2 5115 . . . . . . . . . . . . . . . 16  |-  ( z  =  ( H "
b )  ->  ( F  |`  z )  =  ( F  |`  ( H " b ) ) )
2423oveq2d 6317 . . . . . . . . . . . . . . 15  |-  ( z  =  ( H "
b )  ->  ( G  gsumg  ( F  |`  z
) )  =  ( G  gsumg  ( F  |`  ( H " b ) ) ) )
2524eleq1d 2491 . . . . . . . . . . . . . 14  |-  ( z  =  ( H "
b )  ->  (
( G  gsumg  ( F  |`  z
) )  e.  u  <->  ( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u ) )
2622, 25imbi12d 321 . . . . . . . . . . . . 13  |-  ( z  =  ( H "
b )  ->  (
( ( H "
a )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  ( ( H
" a )  C_  ( H " b )  ->  ( G  gsumg  ( F  |`  ( H " b
) ) )  e.  u ) ) )
2719, 26ralrnmpt 6042 . . . . . . . . . . . 12  |-  ( A. b  e.  ( ~P C  i^i  Fin ) ( H " b )  e.  ( ~P A  i^i  Fin )  ->  ( A. z  e.  ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) ( ( H " a
)  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. b  e.  ( ~P C  i^i  Fin ) ( ( H
" a )  C_  ( H " b )  ->  ( G  gsumg  ( F  |`  ( H " b
) ) )  e.  u ) ) )
2821, 27syl 17 . . . . . . . . . . 11  |-  ( ph  ->  ( A. z  e. 
ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) ( ( H " a
)  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. b  e.  ( ~P C  i^i  Fin ) ( ( H
" a )  C_  ( H " b )  ->  ( G  gsumg  ( F  |`  ( H " b
) ) )  e.  u ) ) )
2916raleqdv 3031 . . . . . . . . . . 11  |-  ( ph  ->  ( A. z  e. 
ran  ( a  e.  ( ~P C  i^i  Fin )  |->  ( H "
a ) ) ( ( H " a
)  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
3028, 29bitr3d 258 . . . . . . . . . 10  |-  ( ph  ->  ( A. b  e.  ( ~P C  i^i  Fin ) ( ( H
" a )  C_  ( H " b )  ->  ( G  gsumg  ( F  |`  ( H " b
) ) )  e.  u )  <->  A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )
3130adantr 466 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P C  i^i  Fin ) )  ->  ( A. b  e.  ( ~P C  i^i  Fin )
( ( H "
a )  C_  ( H " b )  -> 
( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u )  <->  A. z  e.  ( ~P A  i^i  Fin )
( ( H "
a )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
) ) )
32 f1of1 5826 . . . . . . . . . . . . . 14  |-  ( H : C -1-1-onto-> A  ->  H : C -1-1-> A )
331, 32syl 17 . . . . . . . . . . . . 13  |-  ( ph  ->  H : C -1-1-> A
)
3433ad2antrr 730 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  H : C -1-1-> A )
35 elfpw 7878 . . . . . . . . . . . . . 14  |-  ( a  e.  ( ~P C  i^i  Fin )  <->  ( a  C_  C  /\  a  e. 
Fin ) )
3635simplbi 461 . . . . . . . . . . . . 13  |-  ( a  e.  ( ~P C  i^i  Fin )  ->  a  C_  C )
3736ad2antlr 731 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  a  C_  C )
38 elfpw 7878 . . . . . . . . . . . . . 14  |-  ( b  e.  ( ~P C  i^i  Fin )  <->  ( b  C_  C  /\  b  e. 
Fin ) )
3938simplbi 461 . . . . . . . . . . . . 13  |-  ( b  e.  ( ~P C  i^i  Fin )  ->  b  C_  C )
4039adantl 467 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  b  C_  C )
41 f1imass 6176 . . . . . . . . . . . 12  |-  ( ( H : C -1-1-> A  /\  ( a  C_  C  /\  b  C_  C ) )  ->  ( ( H " a )  C_  ( H " b )  <-> 
a  C_  b )
)
4234, 37, 40, 41syl12anc 1262 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  (
( H " a
)  C_  ( H " b )  <->  a  C_  b ) )
43 tsmsf1o.b . . . . . . . . . . . . . 14  |-  B  =  ( Base `  G
)
44 eqid 2422 . . . . . . . . . . . . . 14  |-  ( 0g
`  G )  =  ( 0g `  G
)
45 tsmsf1o.1 . . . . . . . . . . . . . . 15  |-  ( ph  ->  G  e. CMnd )
4645ad2antrr 730 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  G  e. CMnd )
4738simprbi 465 . . . . . . . . . . . . . . . 16  |-  ( b  e.  ( ~P C  i^i  Fin )  ->  b  e.  Fin )
4847adantl 467 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  b  e.  Fin )
49 f1ores 5841 . . . . . . . . . . . . . . . . 17  |-  ( ( H : C -1-1-> A  /\  b  C_  C )  ->  ( H  |`  b ) : b -1-1-onto-> ( H " b ) )
5034, 40, 49syl2anc 665 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( H  |`  b ) : b -1-1-onto-> ( H " b
) )
51 f1ofo 5834 . . . . . . . . . . . . . . . 16  |-  ( ( H  |`  b ) : b -1-1-onto-> ( H " b
)  ->  ( H  |`  b ) : b
-onto-> ( H " b
) )
5250, 51syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( H  |`  b ) : b -onto-> ( H "
b ) )
53 fofi 7862 . . . . . . . . . . . . . . 15  |-  ( ( b  e.  Fin  /\  ( H  |`  b ) : b -onto-> ( H
" b ) )  ->  ( H "
b )  e.  Fin )
5448, 52, 53syl2anc 665 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( H " b )  e. 
Fin )
55 tsmsf1o.f . . . . . . . . . . . . . . . 16  |-  ( ph  ->  F : A --> B )
5655ad2antrr 730 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  F : A --> B )
57 imassrn 5194 . . . . . . . . . . . . . . . 16  |-  ( H
" b )  C_  ran  H
581ad2antrr 730 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  H : C -1-1-onto-> A )
59 f1ofo 5834 . . . . . . . . . . . . . . . . 17  |-  ( H : C -1-1-onto-> A  ->  H : C -onto-> A )
60 forn 5809 . . . . . . . . . . . . . . . . 17  |-  ( H : C -onto-> A  ->  ran  H  =  A )
6158, 59, 603syl 18 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ran  H  =  A )
6257, 61syl5sseq 3512 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( H " b )  C_  A )
6356, 62fssresd 5763 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( F  |`  ( H "
b ) ) : ( H " b
) --> B )
64 fvex 5887 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  G )  e. 
_V
6564a1i 11 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( 0g `  G )  e. 
_V )
6663, 54, 65fdmfifsupp 7895 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( F  |`  ( H "
b ) ) finSupp  ( 0g `  G ) )
6743, 44, 46, 54, 63, 66, 50gsumf1o 17535 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  ( H " b ) ) )  =  ( G 
gsumg  ( ( F  |`  ( H " b ) )  o.  ( H  |`  b ) ) ) )
68 df-ima 4862 . . . . . . . . . . . . . . . . 17  |-  ( H
" b )  =  ran  ( H  |`  b )
6968eqimss2i 3519 . . . . . . . . . . . . . . . 16  |-  ran  ( H  |`  b )  C_  ( H " b )
70 cores 5353 . . . . . . . . . . . . . . . 16  |-  ( ran  ( H  |`  b
)  C_  ( H " b )  ->  (
( F  |`  ( H " b ) )  o.  ( H  |`  b ) )  =  ( F  o.  ( H  |`  b ) ) )
7169, 70ax-mp 5 . . . . . . . . . . . . . . 15  |-  ( ( F  |`  ( H " b ) )  o.  ( H  |`  b
) )  =  ( F  o.  ( H  |`  b ) )
72 resco 5354 . . . . . . . . . . . . . . 15  |-  ( ( F  o.  H )  |`  b )  =  ( F  o.  ( H  |`  b ) )
7371, 72eqtr4i 2454 . . . . . . . . . . . . . 14  |-  ( ( F  |`  ( H " b ) )  o.  ( H  |`  b
) )  =  ( ( F  o.  H
)  |`  b )
7473oveq2i 6312 . . . . . . . . . . . . 13  |-  ( G 
gsumg  ( ( F  |`  ( H " b ) )  o.  ( H  |`  b ) ) )  =  ( G  gsumg  ( ( F  o.  H )  |`  b ) )
7567, 74syl6eq 2479 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  ( H " b ) ) )  =  ( G 
gsumg  ( ( F  o.  H )  |`  b
) ) )
7675eleq1d 2491 . . . . . . . . . . 11  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  (
( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u  <->  ( G  gsumg  ( ( F  o.  H
)  |`  b ) )  e.  u ) )
7742, 76imbi12d 321 . . . . . . . . . 10  |-  ( ( ( ph  /\  a  e.  ( ~P C  i^i  Fin ) )  /\  b  e.  ( ~P C  i^i  Fin ) )  ->  (
( ( H "
a )  C_  ( H " b )  -> 
( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u )  <-> 
( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b
) )  e.  u
) ) )
7877ralbidva 2861 . . . . . . . . 9  |-  ( (
ph  /\  a  e.  ( ~P C  i^i  Fin ) )  ->  ( A. b  e.  ( ~P C  i^i  Fin )
( ( H "
a )  C_  ( H " b )  -> 
( G  gsumg  ( F  |`  ( H " b ) ) )  e.  u )  <->  A. b  e.  ( ~P C  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b
) )  e.  u
) ) )
7931, 78bitr3d 258 . . . . . . . 8  |-  ( (
ph  /\  a  e.  ( ~P C  i^i  Fin ) )  ->  ( A. z  e.  ( ~P A  i^i  Fin )
( ( H "
a )  C_  z  ->  ( G  gsumg  ( F  |`  z
) )  e.  u
)  <->  A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) )
8079rexbidva 2936 . . . . . . 7  |-  ( ph  ->  ( E. a  e.  ( ~P C  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( ( H
" a )  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  <->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) )
8113, 17, 803bitr3d 286 . . . . . 6  |-  ( ph  ->  ( E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u )  <->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) )
8281imbi2d 317 . . . . 5  |-  ( ph  ->  ( ( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  <->  ( x  e.  u  ->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) ) )
8382ralbidv 2864 . . . 4  |-  ( ph  ->  ( A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) )  <->  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) ) )
8483anbi2d 708 . . 3  |-  ( ph  ->  ( ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) )  <-> 
( x  e.  B  /\  A. u  e.  (
TopOpen `  G ) ( x  e.  u  ->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin )
( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b
) )  e.  u
) ) ) ) )
85 eqid 2422 . . . 4  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
86 eqid 2422 . . . 4  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
87 tsmsf1o.2 . . . 4  |-  ( ph  ->  G  e.  TopSp )
88 tsmsf1o.a . . . 4  |-  ( ph  ->  A  e.  V )
8943, 85, 86, 45, 87, 88, 55eltsms 21131 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. y  e.  ( ~P A  i^i  Fin ) A. z  e.  ( ~P A  i^i  Fin ) ( y  C_  z  ->  ( G  gsumg  ( F  |`  z ) )  e.  u ) ) ) ) )
90 eqid 2422 . . . 4  |-  ( ~P C  i^i  Fin )  =  ( ~P C  i^i  Fin )
91 f1dmex 6773 . . . . 5  |-  ( ( H : C -1-1-> A  /\  A  e.  V
)  ->  C  e.  _V )
9233, 88, 91syl2anc 665 . . . 4  |-  ( ph  ->  C  e.  _V )
93 f1of 5827 . . . . . 6  |-  ( H : C -1-1-onto-> A  ->  H : C
--> A )
941, 93syl 17 . . . . 5  |-  ( ph  ->  H : C --> A )
95 fco 5752 . . . . 5  |-  ( ( F : A --> B  /\  H : C --> A )  ->  ( F  o.  H ) : C --> B )
9655, 94, 95syl2anc 665 . . . 4  |-  ( ph  ->  ( F  o.  H
) : C --> B )
9743, 85, 90, 45, 87, 92, 96eltsms 21131 . . 3  |-  ( ph  ->  ( x  e.  ( G tsums  ( F  o.  H ) )  <->  ( x  e.  B  /\  A. u  e.  ( TopOpen `  G )
( x  e.  u  ->  E. a  e.  ( ~P C  i^i  Fin ) A. b  e.  ( ~P C  i^i  Fin ) ( a  C_  b  ->  ( G  gsumg  ( ( F  o.  H )  |`  b ) )  e.  u ) ) ) ) )
9884, 89, 973bitr4d 288 . 2  |-  ( ph  ->  ( x  e.  ( G tsums  F )  <->  x  e.  ( G tsums  ( F  o.  H ) ) ) )
9998eqrdv 2419 1  |-  ( ph  ->  ( G tsums  F )  =  ( G tsums  ( F  o.  H )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    /\ wa 370    = wceq 1437    e. wcel 1868   A.wral 2775   E.wrex 2776   _Vcvv 3081    i^i cin 3435    C_ wss 3436   ~Pcpw 3979    |-> cmpt 4479   ran crn 4850    |` cres 4851   "cima 4852    o. ccom 4853   -->wf 5593   -1-1->wf1 5594   -onto->wfo 5595   -1-1-onto->wf1o 5596   ` cfv 5597  (class class class)co 6301   Fincfn 7573   Basecbs 15106   TopOpenctopn 15305   0gc0g 15323    gsumg cgsu 15324  CMndccmn 17415   TopSpctps 19903   tsums ctsu 21124
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-se 4809  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-isom 5606  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-supp 6922  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-fsupp 7886  df-oi 8027  df-card 8374  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-nn 10610  df-n0 10870  df-z 10938  df-uz 11160  df-fz 11785  df-fzo 11916  df-seq 12213  df-hash 12515  df-0g 15325  df-gsum 15326  df-mgm 16473  df-sgrp 16512  df-mnd 16522  df-cntz 16956  df-cmn 17417  df-fbas 18952  df-fg 18953  df-top 19905  df-topon 19907  df-topsp 19908  df-ntr 20019  df-nei 20098  df-fil 20845  df-fm 20937  df-flim 20938  df-flf 20939  df-tsms 21125
This theorem is referenced by:  esumf1o  28864
  Copyright terms: Public domain W3C validator