MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsmsadd Structured version   Unicode version

Theorem tsmsadd 20941
Description: The sum of two infinite group sums. (Contributed by Mario Carneiro, 19-Sep-2015.) (Proof shortened by AV, 24-Jul-2019.)
Hypotheses
Ref Expression
tsmsadd.b  |-  B  =  ( Base `  G
)
tsmsadd.p  |-  .+  =  ( +g  `  G )
tsmsadd.1  |-  ( ph  ->  G  e. CMnd )
tsmsadd.2  |-  ( ph  ->  G  e. TopMnd )
tsmsadd.a  |-  ( ph  ->  A  e.  V )
tsmsadd.f  |-  ( ph  ->  F : A --> B )
tsmsadd.h  |-  ( ph  ->  H : A --> B )
tsmsadd.x  |-  ( ph  ->  X  e.  ( G tsums 
F ) )
tsmsadd.y  |-  ( ph  ->  Y  e.  ( G tsums 
H ) )
Assertion
Ref Expression
tsmsadd  |-  ( ph  ->  ( X  .+  Y
)  e.  ( G tsums 
( F  oF  .+  H ) ) )

Proof of Theorem tsmsadd
Dummy variables  y 
z  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tsmsadd.b . . . . . 6  |-  B  =  ( Base `  G
)
2 tsmsadd.1 . . . . . 6  |-  ( ph  ->  G  e. CMnd )
3 tsmsadd.2 . . . . . . 7  |-  ( ph  ->  G  e. TopMnd )
4 tmdtps 20867 . . . . . . 7  |-  ( G  e. TopMnd  ->  G  e.  TopSp )
53, 4syl 17 . . . . . 6  |-  ( ph  ->  G  e.  TopSp )
6 tsmsadd.a . . . . . 6  |-  ( ph  ->  A  e.  V )
7 tsmsadd.f . . . . . 6  |-  ( ph  ->  F : A --> B )
81, 2, 5, 6, 7tsmscl 20925 . . . . 5  |-  ( ph  ->  ( G tsums  F ) 
C_  B )
9 tsmsadd.x . . . . 5  |-  ( ph  ->  X  e.  ( G tsums 
F ) )
108, 9sseldd 3443 . . . 4  |-  ( ph  ->  X  e.  B )
11 tsmsadd.h . . . . . 6  |-  ( ph  ->  H : A --> B )
121, 2, 5, 6, 11tsmscl 20925 . . . . 5  |-  ( ph  ->  ( G tsums  H ) 
C_  B )
13 tsmsadd.y . . . . 5  |-  ( ph  ->  Y  e.  ( G tsums 
H ) )
1412, 13sseldd 3443 . . . 4  |-  ( ph  ->  Y  e.  B )
15 tsmsadd.p . . . . 5  |-  .+  =  ( +g  `  G )
16 eqid 2402 . . . . 5  |-  ( +f `  G )  =  ( +f `  G )
171, 15, 16plusfval 16202 . . . 4  |-  ( ( X  e.  B  /\  Y  e.  B )  ->  ( X ( +f `  G ) Y )  =  ( X  .+  Y ) )
1810, 14, 17syl2anc 659 . . 3  |-  ( ph  ->  ( X ( +f `  G ) Y )  =  ( X  .+  Y ) )
19 eqid 2402 . . . . . 6  |-  ( TopOpen `  G )  =  (
TopOpen `  G )
201, 19istps 19729 . . . . 5  |-  ( G  e.  TopSp 
<->  ( TopOpen `  G )  e.  (TopOn `  B )
)
215, 20sylib 196 . . . 4  |-  ( ph  ->  ( TopOpen `  G )  e.  (TopOn `  B )
)
22 eqid 2402 . . . . . 6  |-  ( ~P A  i^i  Fin )  =  ( ~P A  i^i  Fin )
23 eqid 2402 . . . . . 6  |-  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y 
C_  z } )  =  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } )
24 eqid 2402 . . . . . 6  |-  ran  (
y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } )  =  ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } )
2522, 23, 24, 6tsmsfbas 20918 . . . . 5  |-  ( ph  ->  ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } )  e.  (
fBas `  ( ~P A  i^i  Fin ) ) )
26 fgcl 20671 . . . . 5  |-  ( ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } )  e.  (
fBas `  ( ~P A  i^i  Fin ) )  ->  ( ( ~P A  i^i  Fin ) filGen ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) )  e.  ( Fil `  ( ~P A  i^i  Fin )
) )
2725, 26syl 17 . . . 4  |-  ( ph  ->  ( ( ~P A  i^i  Fin ) filGen ran  (
y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) )  e.  ( Fil `  ( ~P A  i^i  Fin )
) )
281, 22, 2, 6, 7tsmslem1 20919 . . . 4  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( F  |`  z
) )  e.  B
)
291, 22, 2, 6, 11tsmslem1 20919 . . . 4  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( H  |`  z
) )  e.  B
)
301, 19, 22, 24, 2, 6, 7tsmsval 20921 . . . . 5  |-  ( ph  ->  ( G tsums  F )  =  ( ( (
TopOpen `  G )  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  z ) ) ) ) )
319, 30eleqtrd 2492 . . . 4  |-  ( ph  ->  X  e.  ( ( ( TopOpen `  G )  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  (
y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( F  |`  z ) ) ) ) )
321, 19, 22, 24, 2, 6, 11tsmsval 20921 . . . . 5  |-  ( ph  ->  ( G tsums  H )  =  ( ( (
TopOpen `  G )  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( H  |`  z ) ) ) ) )
3313, 32eleqtrd 2492 . . . 4  |-  ( ph  ->  Y  e.  ( ( ( TopOpen `  G )  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  (
y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( H  |`  z ) ) ) ) )
3419, 16tmdcn 20874 . . . . . 6  |-  ( G  e. TopMnd  ->  ( +f `  G )  e.  ( ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( TopOpen `  G )
) )
353, 34syl 17 . . . . 5  |-  ( ph  ->  ( +f `  G )  e.  ( ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( TopOpen `  G )
) )
36 opelxpi 4855 . . . . . . 7  |-  ( ( X  e.  B  /\  Y  e.  B )  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
3710, 14, 36syl2anc 659 . . . . . 6  |-  ( ph  -> 
<. X ,  Y >.  e.  ( B  X.  B
) )
38 txtopon 20384 . . . . . . . 8  |-  ( ( ( TopOpen `  G )  e.  (TopOn `  B )  /\  ( TopOpen `  G )  e.  (TopOn `  B )
)  ->  ( ( TopOpen
`  G )  tX  ( TopOpen `  G )
)  e.  (TopOn `  ( B  X.  B
) ) )
3921, 21, 38syl2anc 659 . . . . . . 7  |-  ( ph  ->  ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  e.  (TopOn `  ( B  X.  B ) ) )
40 toponuni 19720 . . . . . . 7  |-  ( ( ( TopOpen `  G )  tX  ( TopOpen `  G )
)  e.  (TopOn `  ( B  X.  B
) )  ->  ( B  X.  B )  = 
U. ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) ) )
4139, 40syl 17 . . . . . 6  |-  ( ph  ->  ( B  X.  B
)  =  U. (
( TopOpen `  G )  tX  ( TopOpen `  G )
) )
4237, 41eleqtrd 2492 . . . . 5  |-  ( ph  -> 
<. X ,  Y >.  e. 
U. ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) ) )
43 eqid 2402 . . . . . 6  |-  U. (
( TopOpen `  G )  tX  ( TopOpen `  G )
)  =  U. (
( TopOpen `  G )  tX  ( TopOpen `  G )
)
4443cncnpi 20072 . . . . 5  |-  ( ( ( +f `  G )  e.  ( ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  Cn  ( TopOpen `  G )
)  /\  <. X ,  Y >.  e.  U. (
( TopOpen `  G )  tX  ( TopOpen `  G )
) )  ->  ( +f `  G
)  e.  ( ( ( ( TopOpen `  G
)  tX  ( TopOpen `  G ) )  CnP  ( TopOpen `  G )
) `  <. X ,  Y >. ) )
4535, 42, 44syl2anc 659 . . . 4  |-  ( ph  ->  ( +f `  G )  e.  ( ( ( ( TopOpen `  G )  tX  ( TopOpen
`  G ) )  CnP  ( TopOpen `  G
) ) `  <. X ,  Y >. )
)
4621, 21, 27, 28, 29, 31, 33, 45flfcnp2 20800 . . 3  |-  ( ph  ->  ( X ( +f `  G ) Y )  e.  ( ( ( TopOpen `  G
)  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( ( G 
gsumg  ( F  |`  z ) ) ( +f `  G ) ( G 
gsumg  ( H  |`  z ) ) ) ) ) )
4718, 46eqeltrrd 2491 . 2  |-  ( ph  ->  ( X  .+  Y
)  e.  ( ( ( TopOpen `  G )  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  (
y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( ( G 
gsumg  ( F  |`  z ) ) ( +f `  G ) ( G 
gsumg  ( H  |`  z ) ) ) ) ) )
48 cmnmnd 17137 . . . . . . 7  |-  ( G  e. CMnd  ->  G  e.  Mnd )
492, 48syl 17 . . . . . 6  |-  ( ph  ->  G  e.  Mnd )
501, 15mndcl 16253 . . . . . . 7  |-  ( ( G  e.  Mnd  /\  x  e.  B  /\  y  e.  B )  ->  ( x  .+  y
)  e.  B )
51503expb 1198 . . . . . 6  |-  ( ( G  e.  Mnd  /\  ( x  e.  B  /\  y  e.  B
) )  ->  (
x  .+  y )  e.  B )
5249, 51sylan 469 . . . . 5  |-  ( (
ph  /\  ( x  e.  B  /\  y  e.  B ) )  -> 
( x  .+  y
)  e.  B )
53 inidm 3648 . . . . 5  |-  ( A  i^i  A )  =  A
5452, 7, 11, 6, 6, 53off 6536 . . . 4  |-  ( ph  ->  ( F  oF  .+  H ) : A --> B )
551, 19, 22, 24, 2, 6, 54tsmsval 20921 . . 3  |-  ( ph  ->  ( G tsums  ( F  oF  .+  H
) )  =  ( ( ( TopOpen `  G
)  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( ( F  oF  .+  H )  |`  z
) ) ) ) )
56 eqid 2402 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
572adantr 463 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  G  e. CMnd )
58 elfpw 7856 . . . . . . . . 9  |-  ( z  e.  ( ~P A  i^i  Fin )  <->  ( z  C_  A  /\  z  e. 
Fin ) )
5958simprbi 462 . . . . . . . 8  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  e.  Fin )
6059adantl 464 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  z  e.  Fin )
6158simplbi 458 . . . . . . . 8  |-  ( z  e.  ( ~P A  i^i  Fin )  ->  z  C_  A )
62 fssres 5734 . . . . . . . 8  |-  ( ( F : A --> B  /\  z  C_  A )  -> 
( F  |`  z
) : z --> B )
637, 61, 62syl2an 475 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  z ) : z --> B )
64 fssres 5734 . . . . . . . 8  |-  ( ( H : A --> B  /\  z  C_  A )  -> 
( H  |`  z
) : z --> B )
6511, 61, 64syl2an 475 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( H  |`  z ) : z --> B )
66 fvex 5859 . . . . . . . . 9  |-  ( 0g
`  G )  e. 
_V
6766a1i 11 . . . . . . . 8  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( 0g `  G )  e. 
_V )
6863, 60, 67fdmfifsupp 7873 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( F  |`  z ) finSupp  ( 0g `  G ) )
6965, 60, 67fdmfifsupp 7873 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( H  |`  z ) finSupp  ( 0g `  G ) )
701, 56, 15, 57, 60, 63, 65, 68, 69gsumadd 17262 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( ( F  |`  z )  oF  .+  ( H  |`  z ) ) )  =  ( ( G 
gsumg  ( F  |`  z ) )  .+  ( G 
gsumg  ( H  |`  z ) ) ) )
71 fvex 5859 . . . . . . . . . . . 12  |-  ( Base `  G )  e.  _V
721, 71eqeltri 2486 . . . . . . . . . . 11  |-  B  e. 
_V
7372a1i 11 . . . . . . . . . 10  |-  ( ph  ->  B  e.  _V )
74 fex2 6739 . . . . . . . . . 10  |-  ( ( F : A --> B  /\  A  e.  V  /\  B  e.  _V )  ->  F  e.  _V )
757, 6, 73, 74syl3anc 1230 . . . . . . . . 9  |-  ( ph  ->  F  e.  _V )
76 fex2 6739 . . . . . . . . . 10  |-  ( ( H : A --> B  /\  A  e.  V  /\  B  e.  _V )  ->  H  e.  _V )
7711, 6, 73, 76syl3anc 1230 . . . . . . . . 9  |-  ( ph  ->  H  e.  _V )
78 offres 6779 . . . . . . . . 9  |-  ( ( F  e.  _V  /\  H  e.  _V )  ->  ( ( F  oF  .+  H )  |`  z )  =  ( ( F  |`  z
)  oF  .+  ( H  |`  z ) ) )
7975, 77, 78syl2anc 659 . . . . . . . 8  |-  ( ph  ->  ( ( F  oF  .+  H )  |`  z )  =  ( ( F  |`  z
)  oF  .+  ( H  |`  z ) ) )
8079adantr 463 . . . . . . 7  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  (
( F  oF  .+  H )  |`  z )  =  ( ( F  |`  z
)  oF  .+  ( H  |`  z ) ) )
8180oveq2d 6294 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( ( F  oF  .+  H )  |`  z ) )  =  ( G  gsumg  ( ( F  |`  z )  oF  .+  ( H  |`  z ) ) ) )
821, 15, 16plusfval 16202 . . . . . . 7  |-  ( ( ( G  gsumg  ( F  |`  z
) )  e.  B  /\  ( G  gsumg  ( H  |`  z
) )  e.  B
)  ->  ( ( G  gsumg  ( F  |`  z
) ) ( +f `  G ) ( G  gsumg  ( H  |`  z
) ) )  =  ( ( G  gsumg  ( F  |`  z ) )  .+  ( G  gsumg  ( H  |`  z
) ) ) )
8328, 29, 82syl2anc 659 . . . . . 6  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  (
( G  gsumg  ( F  |`  z
) ) ( +f `  G ) ( G  gsumg  ( H  |`  z
) ) )  =  ( ( G  gsumg  ( F  |`  z ) )  .+  ( G  gsumg  ( H  |`  z
) ) ) )
8470, 81, 833eqtr4d 2453 . . . . 5  |-  ( (
ph  /\  z  e.  ( ~P A  i^i  Fin ) )  ->  ( G  gsumg  ( ( F  oF  .+  H )  |`  z ) )  =  ( ( G  gsumg  ( F  |`  z ) ) ( +f `  G
) ( G  gsumg  ( H  |`  z ) ) ) )
8584mpteq2dva 4481 . . . 4  |-  ( ph  ->  ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( ( F  oF  .+  H )  |`  z
) ) )  =  ( z  e.  ( ~P A  i^i  Fin )  |->  ( ( G 
gsumg  ( F  |`  z ) ) ( +f `  G ) ( G 
gsumg  ( H  |`  z ) ) ) ) )
8685fveq2d 5853 . . 3  |-  ( ph  ->  ( ( ( TopOpen `  G )  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( G  gsumg  ( ( F  oF  .+  H )  |`  z
) ) ) )  =  ( ( (
TopOpen `  G )  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( ( G 
gsumg  ( F  |`  z ) ) ( +f `  G ) ( G 
gsumg  ( H  |`  z ) ) ) ) ) )
8755, 86eqtrd 2443 . 2  |-  ( ph  ->  ( G tsums  ( F  oF  .+  H
) )  =  ( ( ( TopOpen `  G
)  fLimf  ( ( ~P A  i^i  Fin ) filGen ran  ( y  e.  ( ~P A  i^i  Fin )  |->  { z  e.  ( ~P A  i^i  Fin )  |  y  C_  z } ) ) ) `
 ( z  e.  ( ~P A  i^i  Fin )  |->  ( ( G 
gsumg  ( F  |`  z ) ) ( +f `  G ) ( G 
gsumg  ( H  |`  z ) ) ) ) ) )
8847, 87eleqtrrd 2493 1  |-  ( ph  ->  ( X  .+  Y
)  e.  ( G tsums 
( F  oF  .+  H ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    = wceq 1405    e. wcel 1842   {crab 2758   _Vcvv 3059    i^i cin 3413    C_ wss 3414   ~Pcpw 3955   <.cop 3978   U.cuni 4191    |-> cmpt 4453    X. cxp 4821   ran crn 4824    |` cres 4825   -->wf 5565   ` cfv 5569  (class class class)co 6278    oFcof 6519   Fincfn 7554   Basecbs 14841   +g cplusg 14909   TopOpenctopn 15036   0gc0g 15054    gsumg cgsu 15055   +fcplusf 16193   Mndcmnd 16243  CMndccmn 17122   fBascfbas 18726   filGencfg 18727  TopOnctopon 19687   TopSpctps 19689    Cn ccn 20018    CnP ccnp 20019    tX ctx 20353   Filcfil 20638    fLimf cflf 20728  TopMndctmd 20861   tsums ctsu 20916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-se 4783  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-isom 5578  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-supp 6903  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-fsupp 7864  df-oi 7969  df-card 8352  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-n0 10837  df-z 10906  df-uz 11128  df-fz 11727  df-fzo 11855  df-seq 12152  df-hash 12453  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-ress 14848  df-plusg 14922  df-0g 15056  df-gsum 15057  df-topgen 15058  df-plusf 16195  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-submnd 16291  df-cntz 16679  df-cmn 17124  df-fbas 18736  df-fg 18737  df-top 19691  df-bases 19693  df-topon 19694  df-topsp 19695  df-ntr 19813  df-nei 19892  df-cn 20021  df-cnp 20022  df-tx 20355  df-fil 20639  df-fm 20731  df-flim 20732  df-flf 20733  df-tmd 20863  df-tsms 20917
This theorem is referenced by:  tsmssub  20943  tsmssplit  20946  esumadd  28504  esumaddf  28508
  Copyright terms: Public domain W3C validator