MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskwe Structured version   Visualization version   Unicode version

Theorem tskwe 8402
Description: A Tarski set is well-orderable. (Contributed by Mario Carneiro, 19-Apr-2013.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
tskwe  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  A  e.  dom  card )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem tskwe
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwexg 4585 . . . 4  |-  ( A  e.  V  ->  ~P A  e.  _V )
2 rabexg 4549 . . . 4  |-  ( ~P A  e.  _V  ->  { x  e.  ~P A  |  x  ~<  A }  e.  _V )
3 incom 3616 . . . . 5  |-  ( { x  e.  ~P A  |  x  ~<  A }  i^i  On )  =  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )
4 inex1g 4539 . . . . 5  |-  ( { x  e.  ~P A  |  x  ~<  A }  e.  _V  ->  ( {
x  e.  ~P A  |  x  ~<  A }  i^i  On )  e.  _V )
53, 4syl5eqelr 2554 . . . 4  |-  ( { x  e.  ~P A  |  x  ~<  A }  e.  _V  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } )  e.  _V )
6 inss1 3643 . . . . . . . . . . 11  |-  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  C_  On
76sseli 3414 . . . . . . . . . 10  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  e.  On )
8 onelon 5455 . . . . . . . . . . 11  |-  ( ( z  e.  On  /\  y  e.  z )  ->  y  e.  On )
98ancoms 460 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  On )  ->  y  e.  On )
107, 9sylan2 482 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  e.  On )
11 onelss 5472 . . . . . . . . . . . . . 14  |-  ( z  e.  On  ->  (
y  e.  z  -> 
y  C_  z )
)
1211impcom 437 . . . . . . . . . . . . 13  |-  ( ( y  e.  z  /\  z  e.  On )  ->  y  C_  z )
137, 12sylan2 482 . . . . . . . . . . . 12  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  C_  z )
14 inss2 3644 . . . . . . . . . . . . . . . . 17  |-  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  C_  { x  e.  ~P A  |  x 
~<  A }
1514sseli 3414 . . . . . . . . . . . . . . . 16  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  e.  { x  e.  ~P A  |  x  ~<  A }
)
16 breq1 4398 . . . . . . . . . . . . . . . . 17  |-  ( x  =  z  ->  (
x  ~<  A  <->  z  ~<  A ) )
1716elrab 3184 . . . . . . . . . . . . . . . 16  |-  ( z  e.  { x  e. 
~P A  |  x 
~<  A }  <->  ( z  e.  ~P A  /\  z  ~<  A ) )
1815, 17sylib 201 . . . . . . . . . . . . . . 15  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  ( z  e.  ~P A  /\  z  ~<  A ) )
1918simpld 466 . . . . . . . . . . . . . 14  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  e.  ~P A )
2019elpwid 3952 . . . . . . . . . . . . 13  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  C_  A )
2120adantl 473 . . . . . . . . . . . 12  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
z  C_  A )
2213, 21sstrd 3428 . . . . . . . . . . 11  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  C_  A )
23 selpw 3949 . . . . . . . . . . 11  |-  ( y  e.  ~P A  <->  y  C_  A )
2422, 23sylibr 217 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  e.  ~P A
)
25 vex 3034 . . . . . . . . . . . 12  |-  z  e. 
_V
26 ssdomg 7633 . . . . . . . . . . . 12  |-  ( z  e.  _V  ->  (
y  C_  z  ->  y  ~<_  z ) )
2725, 13, 26mpsyl 64 . . . . . . . . . . 11  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  ~<_  z )
2818simprd 470 . . . . . . . . . . . 12  |-  ( z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  z  ~<  A )
2928adantl 473 . . . . . . . . . . 11  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
z  ~<  A )
30 domsdomtr 7725 . . . . . . . . . . 11  |-  ( ( y  ~<_  z  /\  z  ~<  A )  ->  y  ~<  A )
3127, 29, 30syl2anc 673 . . . . . . . . . 10  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  ~<  A )
32 breq1 4398 . . . . . . . . . . 11  |-  ( x  =  y  ->  (
x  ~<  A  <->  y  ~<  A ) )
3332elrab 3184 . . . . . . . . . 10  |-  ( y  e.  { x  e. 
~P A  |  x 
~<  A }  <->  ( y  e.  ~P A  /\  y  ~<  A ) )
3424, 31, 33sylanbrc 677 . . . . . . . . 9  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  e.  { x  e.  ~P A  |  x 
~<  A } )
3510, 34elind 3609 . . . . . . . 8  |-  ( ( y  e.  z  /\  z  e.  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } ) )  -> 
y  e.  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } ) )
3635gen2 1678 . . . . . . 7  |-  A. y A. z ( ( y  e.  z  /\  z  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )  ->  y  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )
37 dftr2 4492 . . . . . . 7  |-  ( Tr  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  <->  A. y A. z
( ( y  e.  z  /\  z  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )  ->  y  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) ) )
3836, 37mpbir 214 . . . . . 6  |-  Tr  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )
39 ordon 6628 . . . . . 6  |-  Ord  On
40 trssord 5447 . . . . . 6  |-  ( ( Tr  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  /\  ( On  i^i  { x  e.  ~P A  |  x  ~<  A } )  C_  On  /\ 
Ord  On )  ->  Ord  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } ) )
4138, 6, 39, 40mp3an 1390 . . . . 5  |-  Ord  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )
42 elong 5438 . . . . 5  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e. 
_V  ->  ( ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  e.  On  <->  Ord  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) ) )
4341, 42mpbiri 241 . . . 4  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e. 
_V  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  On )
441, 2, 5, 434syl 19 . . 3  |-  ( A  e.  V  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e.  On )
4544adantr 472 . 2  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e.  On )
46 simpr 468 . . . . 5  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  { x  e.  ~P A  |  x 
~<  A }  C_  A
)
4714, 46syl5ss 3429 . . . 4  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  C_  A )
48 ssdomg 7633 . . . . 5  |-  ( A  e.  V  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  C_  A  ->  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~<_  A ) )
4948adantr 472 . . . 4  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  C_  A  ->  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~<_  A ) )
5047, 49mpd 15 . . 3  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  ~<_  A )
51 ordirr 5448 . . . . 5  |-  ( Ord  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  ->  -.  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )
5241, 51mp1i 13 . . . 4  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  -.  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) )
53443ad2ant1 1051 . . . . . 6  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  On )
54 elpw2g 4564 . . . . . . . . . 10  |-  ( A  e.  V  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  e.  ~P A  <->  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  C_  A ) )
5554adantr 472 . . . . . . . . 9  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  e.  ~P A  <->  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  C_  A ) )
5647, 55mpbird 240 . . . . . . . 8  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e. 
~P A )
57563adant3 1050 . . . . . . 7  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  ~P A
)
58 simp3 1032 . . . . . . 7  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ~<  A )
59 nfcv 2612 . . . . . . . . 9  |-  F/_ x On
60 nfrab1 2957 . . . . . . . . 9  |-  F/_ x { x  e.  ~P A  |  x  ~<  A }
6159, 60nfin 3630 . . . . . . . 8  |-  F/_ x
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)
62 nfcv 2612 . . . . . . . 8  |-  F/_ x ~P A
63 nfcv 2612 . . . . . . . . 9  |-  F/_ x  ~<
64 nfcv 2612 . . . . . . . . 9  |-  F/_ x A
6561, 63, 64nfbr 4440 . . . . . . . 8  |-  F/ x
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  ~<  A
66 breq1 4398 . . . . . . . 8  |-  ( x  =  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ->  ( x  ~<  A  <->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ~<  A ) )
6761, 62, 65, 66elrabf 3182 . . . . . . 7  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  e. 
{ x  e.  ~P A  |  x  ~<  A }  <->  ( ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  e.  ~P A  /\  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ~<  A ) )
6857, 58, 67sylanbrc 677 . . . . . 6  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  { x  e.  ~P A  |  x 
~<  A } )
6953, 68elind 3609 . . . . 5  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A  /\  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } )  ~<  A )  ->  ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  e.  ( On 
i^i  { x  e.  ~P A  |  x  ~<  A } ) )
70693expia 1233 . . . 4  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  (
( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  ~<  A  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  e.  ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
) ) )
7152, 70mtod 182 . . 3  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  -.  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~<  A )
72 bren2 7618 . . 3  |-  ( ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~~  A 
<->  ( ( On  i^i  { x  e.  ~P A  |  x  ~<  A }
)  ~<_  A  /\  -.  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~<  A ) )
7350, 71, 72sylanbrc 677 . 2  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  ( On  i^i  { x  e. 
~P A  |  x 
~<  A } )  ~~  A )
74 isnumi 8398 . 2  |-  ( ( ( On  i^i  {
x  e.  ~P A  |  x  ~<  A }
)  e.  On  /\  ( On  i^i  { x  e.  ~P A  |  x 
~<  A } )  ~~  A )  ->  A  e.  dom  card )
7545, 73, 74syl2anc 673 1  |-  ( ( A  e.  V  /\  { x  e.  ~P A  |  x  ~<  A }  C_  A )  ->  A  e.  dom  card )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007   A.wal 1450    e. wcel 1904   {crab 2760   _Vcvv 3031    i^i cin 3389    C_ wss 3390   ~Pcpw 3942   class class class wbr 4395   Tr wtr 4490   dom cdm 4839   Ord word 5429   Oncon0 5430    ~~ cen 7584    ~<_ cdom 7585    ~< csdm 7586   cardccrd 8387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-rab 2765  df-v 3033  df-sbc 3256  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-ord 5433  df-on 5434  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-card 8391
This theorem is referenced by:  tskwe2  9216  grothac  9273
  Copyright terms: Public domain W3C validator