MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsksdom Structured version   Unicode version

Theorem tsksdom 9146
Description: An element of a Tarski class is strictly dominated by the class. JFM CLASSES2 th. 1 (Contributed by FL, 22-Feb-2011.) (Revised by Mario Carneiro, 18-Jun-2013.)
Assertion
Ref Expression
tsksdom  |-  ( ( T  e.  Tarski  /\  A  e.  T )  ->  A  ~<  T )

Proof of Theorem tsksdom
StepHypRef Expression
1 canth2g 7683 . . 3  |-  ( A  e.  T  ->  A  ~<  ~P A )
21adantl 466 . 2  |-  ( ( T  e.  Tarski  /\  A  e.  T )  ->  A  ~<  ~P A )
3 simpl 457 . . 3  |-  ( ( T  e.  Tarski  /\  A  e.  T )  ->  T  e.  Tarski )
4 tskpwss 9142 . . 3  |-  ( ( T  e.  Tarski  /\  A  e.  T )  ->  ~P A  C_  T )
5 ssdomg 7573 . . 3  |-  ( T  e.  Tarski  ->  ( ~P A  C_  T  ->  ~P A  ~<_  T ) )
63, 4, 5sylc 60 . 2  |-  ( ( T  e.  Tarski  /\  A  e.  T )  ->  ~P A  ~<_  T )
7 sdomdomtr 7662 . 2  |-  ( ( A  ~<  ~P A  /\  ~P A  ~<_  T )  ->  A  ~<  T )
82, 6, 7syl2anc 661 1  |-  ( ( T  e.  Tarski  /\  A  e.  T )  ->  A  ~<  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1767    C_ wss 3481   ~Pcpw 4016   class class class wbr 4453    ~<_ cdom 7526    ~< csdm 7527   Tarskictsk 9138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-tsk 9139
This theorem is referenced by:  2domtsk  9156  r1tskina  9172  tskuni  9173  tskurn  9179  inaprc  9226
  Copyright terms: Public domain W3C validator