MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tskr1om2 Structured version   Unicode version

Theorem tskr1om2 9137
Description: A nonempty Tarski class contains the whole finite cumulative hierarchy. (This proof does not use ax-inf 8046.) (Contributed by NM, 22-Feb-2011.)
Assertion
Ref Expression
tskr1om2  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  U. ( R1 " om )  C_  T )

Proof of Theorem tskr1om2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eluni2 4244 . . 3  |-  ( y  e.  U. ( R1
" om )  <->  E. x  e.  ( R1 " om ) y  e.  x
)
2 r1fnon 8176 . . . . . . . . 9  |-  R1  Fn  On
3 fnfun 5671 . . . . . . . . 9  |-  ( R1  Fn  On  ->  Fun  R1 )
42, 3ax-mp 5 . . . . . . . 8  |-  Fun  R1
5 fvelima 5912 . . . . . . . 8  |-  ( ( Fun  R1  /\  x  e.  ( R1 " om ) )  ->  E. y  e.  om  ( R1 `  y )  =  x )
64, 5mpan 670 . . . . . . 7  |-  ( x  e.  ( R1 " om )  ->  E. y  e.  om  ( R1 `  y )  =  x )
7 r1tr 8185 . . . . . . . . 9  |-  Tr  ( R1 `  y )
8 treq 4541 . . . . . . . . 9  |-  ( ( R1 `  y )  =  x  ->  ( Tr  ( R1 `  y
)  <->  Tr  x )
)
97, 8mpbii 211 . . . . . . . 8  |-  ( ( R1 `  y )  =  x  ->  Tr  x )
109rexlimivw 2947 . . . . . . 7  |-  ( E. y  e.  om  ( R1 `  y )  =  x  ->  Tr  x
)
11 trss 4544 . . . . . . 7  |-  ( Tr  x  ->  ( y  e.  x  ->  y  C_  x ) )
126, 10, 113syl 20 . . . . . 6  |-  ( x  e.  ( R1 " om )  ->  ( y  e.  x  ->  y  C_  x ) )
1312adantl 466 . . . . 5  |-  ( ( ( T  e.  Tarski  /\  T  =/=  (/) )  /\  x  e.  ( R1 " om ) )  -> 
( y  e.  x  ->  y  C_  x )
)
14 tskr1om 9136 . . . . . . . 8  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( R1 " om )  C_  T )
1514sseld 3498 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
x  e.  ( R1
" om )  ->  x  e.  T )
)
16 tskss 9127 . . . . . . . . 9  |-  ( ( T  e.  Tarski  /\  x  e.  T  /\  y  C_  x )  ->  y  e.  T )
17163exp 1190 . . . . . . . 8  |-  ( T  e.  Tarski  ->  ( x  e.  T  ->  ( y  C_  x  ->  y  e.  T ) ) )
1817adantr 465 . . . . . . 7  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
x  e.  T  -> 
( y  C_  x  ->  y  e.  T ) ) )
1915, 18syld 44 . . . . . 6  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
x  e.  ( R1
" om )  -> 
( y  C_  x  ->  y  e.  T ) ) )
2019imp 429 . . . . 5  |-  ( ( ( T  e.  Tarski  /\  T  =/=  (/) )  /\  x  e.  ( R1 " om ) )  -> 
( y  C_  x  ->  y  e.  T ) )
2113, 20syld 44 . . . 4  |-  ( ( ( T  e.  Tarski  /\  T  =/=  (/) )  /\  x  e.  ( R1 " om ) )  -> 
( y  e.  x  ->  y  e.  T ) )
2221rexlimdva 2950 . . 3  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  ( E. x  e.  ( R1 " om ) y  e.  x  ->  y  e.  T ) )
231, 22syl5bi 217 . 2  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  (
y  e.  U. ( R1 " om )  -> 
y  e.  T ) )
2423ssrdv 3505 1  |-  ( ( T  e.  Tarski  /\  T  =/=  (/) )  ->  U. ( R1 " om )  C_  T )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1374    e. wcel 1762    =/= wne 2657   E.wrex 2810    C_ wss 3471   (/)c0 3780   U.cuni 4240   Tr wtr 4535   Oncon0 4873   "cima 4997   Fun wfun 5575    Fn wfn 5576   ` cfv 5581   omcom 6673   R1cr1 8171   Tarskictsk 9117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1963  ax-ext 2440  ax-rep 4553  ax-sep 4563  ax-nul 4571  ax-pow 4620  ax-pr 4681  ax-un 6569
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2274  df-mo 2275  df-clab 2448  df-cleq 2454  df-clel 2457  df-nfc 2612  df-ne 2659  df-ral 2814  df-rex 2815  df-reu 2816  df-rab 2818  df-v 3110  df-sbc 3327  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3781  df-if 3935  df-pw 4007  df-sn 4023  df-pr 4025  df-tp 4027  df-op 4029  df-uni 4241  df-iun 4322  df-br 4443  df-opab 4501  df-mpt 4502  df-tr 4536  df-eprel 4786  df-id 4790  df-po 4795  df-so 4796  df-fr 4833  df-we 4835  df-ord 4876  df-on 4877  df-lim 4878  df-suc 4879  df-xp 5000  df-rel 5001  df-cnv 5002  df-co 5003  df-dm 5004  df-rn 5005  df-res 5006  df-ima 5007  df-iota 5544  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-om 6674  df-recs 7034  df-rdg 7068  df-r1 8173  df-tsk 9118
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator