MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tsetndx Structured version   Unicode version

Theorem tsetndx 14638
Description: Index value of the df-tset 14570 slot. (Contributed by Mario Carneiro, 14-Aug-2015.)
Assertion
Ref Expression
tsetndx  |-  (TopSet `  ndx )  =  9

Proof of Theorem tsetndx
StepHypRef Expression
1 df-tset 14570 . 2  |- TopSet  = Slot  9
2 9nn 10696 . 2  |-  9  e.  NN
31, 2ndxarg 14506 1  |-  (TopSet `  ndx )  =  9
Colors of variables: wff setvar class
Syntax hints:    = wceq 1379   ` cfv 5586   9c9 10588   ndxcnx 14483  TopSetcts 14557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-i2m1 9556  ax-1ne0 9557  ax-rrecex 9560  ax-cnre 9561
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-om 6679  df-recs 7039  df-rdg 7073  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-ndx 14489  df-slot 14490  df-tset 14570
This theorem is referenced by:  topgrpstr  14640  otpsstr  14647  odrngstr  14658  imasvalstr  14703  ipostr  15636  psrvalstr  17783  cnfldstr  18193  indistpsx  19277  tuslem  20505  setsmsbas  20713  setsmsds  20714  tnglem  20889  tngds  20897  zlmtset  27582
  Copyright terms: Public domain W3C validator