Users' Mathboxes Mathbox for Giovanni Mascellani < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tsan2 Structured version   Unicode version

Theorem tsan2 32087
Description: A Tseitin axiom for logical conjunction, in deduction form. (Contributed by Giovanni Mascellani, 24-Mar-2018.)
Assertion
Ref Expression
tsan2  |-  ( th 
->  ( ph  \/  -.  ( ph  /\  ps )
) )

Proof of Theorem tsan2
StepHypRef Expression
1 pm3.14 504 . . . 4  |-  ( ( -.  ph  \/  -.  ps )  ->  -.  ( ph  /\  ps ) )
21orcs 395 . . 3  |-  ( -. 
ph  ->  -.  ( ph  /\ 
ps ) )
32orri 377 . 2  |-  ( ph  \/  -.  ( ph  /\  ps ) )
43a1i 11 1  |-  ( th 
->  ( ph  \/  -.  ( ph  /\  ps )
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 369    /\ wa 370
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372
This theorem is referenced by:  tsna2  32090  ts3an2  32096  mpt2bi123f  32109  mptbi12f  32113
  Copyright terms: Public domain W3C validator