MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trust Structured version   Visualization version   Unicode version

Theorem trust 21322
Description: The trace of a uniform structure  U on a subset  A is a uniform structure on  A. Definition 3 of [BourbakiTop1] p. II.9. (Contributed by Thierry Arnoux, 2-Dec-2017.)
Assertion
Ref Expression
trust  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( Ut  ( A  X.  A
) )  e.  (UnifOn `  A ) )

Proof of Theorem trust
Dummy variables  v  u  w  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 restsspw 15408 . . . 4  |-  ( Ut  ( A  X.  A ) )  C_  ~P ( A  X.  A )
21a1i 11 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( Ut  ( A  X.  A
) )  C_  ~P ( A  X.  A
) )
3 inxp 4972 . . . . . 6  |-  ( ( X  X.  X )  i^i  ( A  X.  A ) )  =  ( ( X  i^i  A )  X.  ( X  i^i  A ) )
4 dfss1 3628 . . . . . . . 8  |-  ( A 
C_  X  <->  ( X  i^i  A )  =  A )
54biimpi 199 . . . . . . 7  |-  ( A 
C_  X  ->  ( X  i^i  A )  =  A )
65sqxpeqd 4865 . . . . . 6  |-  ( A 
C_  X  ->  (
( X  i^i  A
)  X.  ( X  i^i  A ) )  =  ( A  X.  A ) )
73, 6syl5eq 2517 . . . . 5  |-  ( A 
C_  X  ->  (
( X  X.  X
)  i^i  ( A  X.  A ) )  =  ( A  X.  A
) )
87adantl 473 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
( X  X.  X
)  i^i  ( A  X.  A ) )  =  ( A  X.  A
) )
9 simpl 464 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  U  e.  (UnifOn `  X )
)
10 elfvex 5906 . . . . . . . 8  |-  ( U  e.  (UnifOn `  X
)  ->  X  e.  _V )
1110adantr 472 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  X  e.  _V )
12 simpr 468 . . . . . . 7  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A  C_  X )
1311, 12ssexd 4543 . . . . . 6  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A  e.  _V )
14 xpexg 6612 . . . . . 6  |-  ( ( A  e.  _V  /\  A  e.  _V )  ->  ( A  X.  A
)  e.  _V )
1513, 13, 14syl2anc 673 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( A  X.  A )  e. 
_V )
16 ustbasel 21299 . . . . . 6  |-  ( U  e.  (UnifOn `  X
)  ->  ( X  X.  X )  e.  U
)
1716adantr 472 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( X  X.  X )  e.  U )
18 elrestr 15405 . . . . 5  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V  /\  ( X  X.  X )  e.  U
)  ->  ( ( X  X.  X )  i^i  ( A  X.  A
) )  e.  ( Ut  ( A  X.  A
) ) )
199, 15, 17, 18syl3anc 1292 . . . 4  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
( X  X.  X
)  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) ) )
208, 19eqeltrrd 2550 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( A  X.  A )  e.  ( Ut  ( A  X.  A ) ) )
219ad5antr 748 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  U  e.  (UnifOn `  X
) )
2215ad5antr 748 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( A  X.  A
)  e.  _V )
23 simplr 770 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  u  e.  U )
24 simp-4r 785 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  e.  ~P ( A  X.  A ) )
2524elpwid 3952 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  C_  ( A  X.  A ) )
2612ad5antr 748 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  A  C_  X )
27 xpss12 4945 . . . . . . . . . . . . . 14  |-  ( ( A  C_  X  /\  A  C_  X )  -> 
( A  X.  A
)  C_  ( X  X.  X ) )
2826, 26, 27syl2anc 673 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( A  X.  A
)  C_  ( X  X.  X ) )
2925, 28sstrd 3428 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  C_  ( X  X.  X ) )
30 ustssxp 21297 . . . . . . . . . . . . 13  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  u  C_  ( X  X.  X
) )
3121, 23, 30syl2anc 673 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  u  C_  ( X  X.  X ) )
3229, 31unssd 3601 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( w  u.  u
)  C_  ( X  X.  X ) )
33 ssun2 3589 . . . . . . . . . . . 12  |-  u  C_  ( w  u.  u
)
34 ustssel 21298 . . . . . . . . . . . 12  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U  /\  (
w  u.  u ) 
C_  ( X  X.  X ) )  -> 
( u  C_  (
w  u.  u )  ->  ( w  u.  u )  e.  U
) )
3533, 34mpi 20 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U  /\  (
w  u.  u ) 
C_  ( X  X.  X ) )  -> 
( w  u.  u
)  e.  U )
3621, 23, 32, 35syl3anc 1292 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( w  u.  u
)  e.  U )
37 df-ss 3404 . . . . . . . . . . . . . 14  |-  ( w 
C_  ( A  X.  A )  <->  ( w  i^i  ( A  X.  A
) )  =  w )
3825, 37sylib 201 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( w  i^i  ( A  X.  A ) )  =  w )
3938uneq1d 3578 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( ( w  i^i  ( A  X.  A
) )  u.  (
u  i^i  ( A  X.  A ) ) )  =  ( w  u.  ( u  i^i  ( A  X.  A ) ) ) )
40 simpr 468 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
v  =  ( u  i^i  ( A  X.  A ) ) )
41 simpllr 777 . . . . . . . . . . . . . 14  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
v  C_  w )
4240, 41eqsstr3d 3453 . . . . . . . . . . . . 13  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( u  i^i  ( A  X.  A ) ) 
C_  w )
43 ssequn2 3598 . . . . . . . . . . . . 13  |-  ( ( u  i^i  ( A  X.  A ) ) 
C_  w  <->  ( w  u.  ( u  i^i  ( A  X.  A ) ) )  =  w )
4442, 43sylib 201 . . . . . . . . . . . 12  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  -> 
( w  u.  (
u  i^i  ( A  X.  A ) ) )  =  w )
4539, 44eqtr2d 2506 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  =  ( (
w  i^i  ( A  X.  A ) )  u.  ( u  i^i  ( A  X.  A ) ) ) )
46 indir 3682 . . . . . . . . . . 11  |-  ( ( w  u.  u )  i^i  ( A  X.  A ) )  =  ( ( w  i^i  ( A  X.  A
) )  u.  (
u  i^i  ( A  X.  A ) ) )
4745, 46syl6eqr 2523 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  =  ( (
w  u.  u )  i^i  ( A  X.  A ) ) )
48 ineq1 3618 . . . . . . . . . . . 12  |-  ( x  =  ( w  u.  u )  ->  (
x  i^i  ( A  X.  A ) )  =  ( ( w  u.  u )  i^i  ( A  X.  A ) ) )
4948eqeq2d 2481 . . . . . . . . . . 11  |-  ( x  =  ( w  u.  u )  ->  (
w  =  ( x  i^i  ( A  X.  A ) )  <->  w  =  ( ( w  u.  u )  i^i  ( A  X.  A ) ) ) )
5049rspcev 3136 . . . . . . . . . 10  |-  ( ( ( w  u.  u
)  e.  U  /\  w  =  ( (
w  u.  u )  i^i  ( A  X.  A ) ) )  ->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) )
5136, 47, 50syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) )
52 elrest 15404 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  (
w  e.  ( Ut  ( A  X.  A ) )  <->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) ) )
5352biimpar 493 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
5421, 22, 51, 53syl21anc 1291 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  /\  u  e.  U )  /\  v  =  ( u  i^i  ( A  X.  A
) ) )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
55 simp1 1030 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  U  e.  (UnifOn `  X ) )
56153adant3 1050 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  ( A  X.  A )  e.  _V )
57 simp3 1032 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  v  e.  ( Ut  ( A  X.  A
) ) )
58 elrest 15404 . . . . . . . . . . . 12  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  (
v  e.  ( Ut  ( A  X.  A ) )  <->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) ) ) )
5958biimpa 492 . . . . . . . . . . 11  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) ) )
6055, 56, 57, 59syl21anc 1291 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) ) )
61603expa 1231 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) ) )
6261ad2antrr 740 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A ) ) )
6354, 62r19.29a 2918 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ~P ( A  X.  A
) )  /\  v  C_  w )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
6463ex 441 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ~P ( A  X.  A ) )  ->  ( v  C_  w  ->  w  e.  ( Ut  ( A  X.  A
) ) ) )
6564ralrimiva 2809 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  A. w  e.  ~P  ( A  X.  A
) ( v  C_  w  ->  w  e.  ( Ut  ( A  X.  A
) ) ) )
669ad5antr 748 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  U  e.  (UnifOn `  X ) )
6715ad5antr 748 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( A  X.  A )  e.  _V )
68 simpllr 777 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  u  e.  U
)
69 simplr 770 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  x  e.  U
)
70 ustincl 21300 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U  /\  x  e.  U )  ->  (
u  i^i  x )  e.  U )
7166, 68, 69, 70syl3anc 1292 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( u  i^i  x )  e.  U
)
72 simprl 772 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  v  =  ( u  i^i  ( A  X.  A ) ) )
73 simprr 774 . . . . . . . . . . 11  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  w  =  ( x  i^i  ( A  X.  A ) ) )
7472, 73ineq12d 3626 . . . . . . . . . 10  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( v  i^i  w )  =  ( ( u  i^i  ( A  X.  A ) )  i^i  ( x  i^i  ( A  X.  A
) ) ) )
75 inindir 3641 . . . . . . . . . 10  |-  ( ( u  i^i  x )  i^i  ( A  X.  A ) )  =  ( ( u  i^i  ( A  X.  A
) )  i^i  (
x  i^i  ( A  X.  A ) ) )
7674, 75syl6eqr 2523 . . . . . . . . 9  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( v  i^i  w )  =  ( ( u  i^i  x
)  i^i  ( A  X.  A ) ) )
77 ineq1 3618 . . . . . . . . . . 11  |-  ( y  =  ( u  i^i  x )  ->  (
y  i^i  ( A  X.  A ) )  =  ( ( u  i^i  x )  i^i  ( A  X.  A ) ) )
7877eqeq2d 2481 . . . . . . . . . 10  |-  ( y  =  ( u  i^i  x )  ->  (
( v  i^i  w
)  =  ( y  i^i  ( A  X.  A ) )  <->  ( v  i^i  w )  =  ( ( u  i^i  x
)  i^i  ( A  X.  A ) ) ) )
7978rspcev 3136 . . . . . . . . 9  |-  ( ( ( u  i^i  x
)  e.  U  /\  ( v  i^i  w
)  =  ( ( u  i^i  x )  i^i  ( A  X.  A ) ) )  ->  E. y  e.  U  ( v  i^i  w
)  =  ( y  i^i  ( A  X.  A ) ) )
8071, 76, 79syl2anc 673 . . . . . . . 8  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  E. y  e.  U  ( v  i^i  w
)  =  ( y  i^i  ( A  X.  A ) ) )
81 elrest 15404 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  (
( v  i^i  w
)  e.  ( Ut  ( A  X.  A ) )  <->  E. y  e.  U  ( v  i^i  w
)  =  ( y  i^i  ( A  X.  A ) ) ) )
8281biimpar 493 . . . . . . . 8  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  E. y  e.  U  (
v  i^i  w )  =  ( y  i^i  ( A  X.  A
) ) )  -> 
( v  i^i  w
)  e.  ( Ut  ( A  X.  A ) ) )
8366, 67, 80, 82syl21anc 1291 . . . . . . 7  |-  ( ( ( ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  w  e.  ( Ut  ( A  X.  A
) ) )  /\  u  e.  U )  /\  x  e.  U
)  /\  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )  ->  ( v  i^i  w )  e.  ( Ut  ( A  X.  A
) ) )
8461adantr 472 . . . . . . . 8  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  v  =  ( u  i^i  ( A  X.  A ) ) )
859ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  U  e.  (UnifOn `  X ) )
8615ad2antrr 740 . . . . . . . . 9  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  ( A  X.  A )  e.  _V )
87 simpr 468 . . . . . . . . 9  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  w  e.  ( Ut  ( A  X.  A ) ) )
8852biimpa 492 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) )
8985, 86, 87, 88syl21anc 1291 . . . . . . . 8  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A ) ) )
90 reeanv 2944 . . . . . . . 8  |-  ( E. u  e.  U  E. x  e.  U  (
v  =  ( u  i^i  ( A  X.  A ) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) )  <->  ( E. u  e.  U  v  =  ( u  i^i  ( A  X.  A
) )  /\  E. x  e.  U  w  =  ( x  i^i  ( A  X.  A
) ) ) )
9184, 89, 90sylanbrc 677 . . . . . . 7  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  E. u  e.  U  E. x  e.  U  ( v  =  ( u  i^i  ( A  X.  A
) )  /\  w  =  ( x  i^i  ( A  X.  A
) ) ) )
9283, 91r19.29vva 2920 . . . . . 6  |-  ( ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A
) ) )  /\  w  e.  ( Ut  ( A  X.  A ) ) )  ->  ( v  i^i  w )  e.  ( Ut  ( A  X.  A
) ) )
9392ralrimiva 2809 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  A. w  e.  ( Ut  ( A  X.  A
) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) ) )
94 simp-4l 784 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  U  e.  (UnifOn `  X ) )
95 simplr 770 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  u  e.  U )
96 ustdiag 21301 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  (  _I  |`  X )  C_  u )
9794, 95, 96syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  (  _I  |`  X )  C_  u
)
98 simp-4r 785 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  A  C_  X
)
99 inss1 3643 . . . . . . . . . . . . . 14  |-  ( (  _I  |`  X )  i^i  ( A  X.  A
) )  C_  (  _I  |`  X )
100 resss 5134 . . . . . . . . . . . . . 14  |-  (  _I  |`  X )  C_  _I
10199, 100sstri 3427 . . . . . . . . . . . . 13  |-  ( (  _I  |`  X )  i^i  ( A  X.  A
) )  C_  _I
102 iss 5158 . . . . . . . . . . . . 13  |-  ( ( (  _I  |`  X )  i^i  ( A  X.  A ) )  C_  _I 
<->  ( (  _I  |`  X )  i^i  ( A  X.  A ) )  =  (  _I  |`  dom  (
(  _I  |`  X )  i^i  ( A  X.  A ) ) ) )
103101, 102mpbi 213 . . . . . . . . . . . 12  |-  ( (  _I  |`  X )  i^i  ( A  X.  A
) )  =  (  _I  |`  dom  ( (  _I  |`  X )  i^i  ( A  X.  A
) ) )
104 simpr 468 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  X  /\  u  e.  A )  ->  u  e.  A )
105 ssel2 3413 . . . . . . . . . . . . . . . . 17  |-  ( ( A  C_  X  /\  u  e.  A )  ->  u  e.  X )
106 equid 1863 . . . . . . . . . . . . . . . . . 18  |-  u  =  u
107 resieq 5121 . . . . . . . . . . . . . . . . . 18  |-  ( ( u  e.  X  /\  u  e.  X )  ->  ( u (  _I  |`  X ) u  <->  u  =  u ) )
108106, 107mpbiri 241 . . . . . . . . . . . . . . . . 17  |-  ( ( u  e.  X  /\  u  e.  X )  ->  u (  _I  |`  X ) u )
109105, 105, 108syl2anc 673 . . . . . . . . . . . . . . . 16  |-  ( ( A  C_  X  /\  u  e.  A )  ->  u (  _I  |`  X ) u )
110 breq2 4399 . . . . . . . . . . . . . . . . 17  |-  ( v  =  u  ->  (
u (  _I  |`  X ) v  <->  u (  _I  |`  X ) u ) )
111110rspcev 3136 . . . . . . . . . . . . . . . 16  |-  ( ( u  e.  A  /\  u (  _I  |`  X ) u )  ->  E. v  e.  A  u (  _I  |`  X ) v )
112104, 109, 111syl2anc 673 . . . . . . . . . . . . . . 15  |-  ( ( A  C_  X  /\  u  e.  A )  ->  E. v  e.  A  u (  _I  |`  X ) v )
113112ralrimiva 2809 . . . . . . . . . . . . . 14  |-  ( A 
C_  X  ->  A. u  e.  A  E. v  e.  A  u (  _I  |`  X ) v )
114 dminxp 5283 . . . . . . . . . . . . . 14  |-  ( dom  ( (  _I  |`  X )  i^i  ( A  X.  A ) )  =  A  <->  A. u  e.  A  E. v  e.  A  u (  _I  |`  X ) v )
115113, 114sylibr 217 . . . . . . . . . . . . 13  |-  ( A 
C_  X  ->  dom  ( (  _I  |`  X )  i^i  ( A  X.  A ) )  =  A )
116115reseq2d 5111 . . . . . . . . . . . 12  |-  ( A 
C_  X  ->  (  _I  |`  dom  ( (  _I  |`  X )  i^i  ( A  X.  A
) ) )  =  (  _I  |`  A ) )
117103, 116syl5req 2518 . . . . . . . . . . 11  |-  ( A 
C_  X  ->  (  _I  |`  A )  =  ( (  _I  |`  X )  i^i  ( A  X.  A ) ) )
118117adantl 473 . . . . . . . . . 10  |-  ( ( (  _I  |`  X ) 
C_  u  /\  A  C_  X )  ->  (  _I  |`  A )  =  ( (  _I  |`  X )  i^i  ( A  X.  A ) ) )
119 ssrin 3648 . . . . . . . . . . 11  |-  ( (  _I  |`  X )  C_  u  ->  ( (  _I  |`  X )  i^i  ( A  X.  A
) )  C_  (
u  i^i  ( A  X.  A ) ) )
120119adantr 472 . . . . . . . . . 10  |-  ( ( (  _I  |`  X ) 
C_  u  /\  A  C_  X )  ->  (
(  _I  |`  X )  i^i  ( A  X.  A ) )  C_  ( u  i^i  ( A  X.  A ) ) )
121118, 120eqsstrd 3452 . . . . . . . . 9  |-  ( ( (  _I  |`  X ) 
C_  u  /\  A  C_  X )  ->  (  _I  |`  A )  C_  ( u  i^i  ( A  X.  A ) ) )
12297, 98, 121syl2anc 673 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  (  _I  |`  A )  C_  (
u  i^i  ( A  X.  A ) ) )
123 simpr 468 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  v  =  ( u  i^i  ( A  X.  A ) ) )
124122, 123sseqtr4d 3455 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  (  _I  |`  A )  C_  v
)
125124, 61r19.29a 2918 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  (  _I  |`  A ) 
C_  v )
12615ad3antrrr 744 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  ( A  X.  A )  e.  _V )
127 ustinvel 21302 . . . . . . . . . 10  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  `' u  e.  U )
12894, 95, 127syl2anc 673 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  `' u  e.  U )
129123cnveqd 5015 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  `' v  =  `' ( u  i^i  ( A  X.  A
) ) )
130 cnvin 5249 . . . . . . . . . . 11  |-  `' ( u  i^i  ( A  X.  A ) )  =  ( `' u  i^i  `' ( A  X.  A ) )
131 cnvxp 5260 . . . . . . . . . . . 12  |-  `' ( A  X.  A )  =  ( A  X.  A )
132131ineq2i 3622 . . . . . . . . . . 11  |-  ( `' u  i^i  `' ( A  X.  A ) )  =  ( `' u  i^i  ( A  X.  A ) )
133130, 132eqtri 2493 . . . . . . . . . 10  |-  `' ( u  i^i  ( A  X.  A ) )  =  ( `' u  i^i  ( A  X.  A
) )
134129, 133syl6eq 2521 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  `' v  =  ( `' u  i^i  ( A  X.  A
) ) )
135 ineq1 3618 . . . . . . . . . . 11  |-  ( x  =  `' u  -> 
( x  i^i  ( A  X.  A ) )  =  ( `' u  i^i  ( A  X.  A
) ) )
136135eqeq2d 2481 . . . . . . . . . 10  |-  ( x  =  `' u  -> 
( `' v  =  ( x  i^i  ( A  X.  A ) )  <->  `' v  =  ( `' u  i^i  ( A  X.  A ) ) ) )
137136rspcev 3136 . . . . . . . . 9  |-  ( ( `' u  e.  U  /\  `' v  =  ( `' u  i^i  ( A  X.  A ) ) )  ->  E. x  e.  U  `' v  =  ( x  i^i  ( A  X.  A
) ) )
138128, 134, 137syl2anc 673 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  E. x  e.  U  `' v  =  ( x  i^i  ( A  X.  A
) ) )
139 elrest 15404 . . . . . . . . 9  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  ->  ( `' v  e.  ( Ut  ( A  X.  A
) )  <->  E. x  e.  U  `' v  =  ( x  i^i  ( A  X.  A
) ) ) )
140139biimpar 493 . . . . . . . 8  |-  ( ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V )  /\  E. x  e.  U  `' v  =  ( x  i^i  ( A  X.  A
) ) )  ->  `' v  e.  ( Ut  ( A  X.  A
) ) )
14194, 126, 138, 140syl21anc 1291 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  `' v  e.  ( Ut  ( A  X.  A ) ) )
142141, 61r19.29a 2918 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  `' v  e.  ( Ut  ( A  X.  A ) ) )
143 simp-4l 784 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  ->  U  e.  (UnifOn `  X
) )
14415ad3antrrr 744 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( A  X.  A
)  e.  _V )
145 simplr 770 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  ->  x  e.  U )
146 elrestr 15405 . . . . . . . . . . . 12  |-  ( ( U  e.  (UnifOn `  X )  /\  ( A  X.  A )  e. 
_V  /\  x  e.  U )  ->  (
x  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) ) )
147143, 144, 145, 146syl3anc 1292 . . . . . . . . . . 11  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( x  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) ) )
148 inss1 3643 . . . . . . . . . . . . . . 15  |-  ( x  i^i  ( A  X.  A ) )  C_  x
149 coss1 4995 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  x  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( x  o.  (
x  i^i  ( A  X.  A ) ) ) )
150 coss2 4996 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  x  ->  (
x  o.  ( x  i^i  ( A  X.  A ) ) ) 
C_  ( x  o.  x ) )
151149, 150sstrd 3428 . . . . . . . . . . . . . . 15  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  x  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( x  o.  x
) )
152148, 151ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( x  o.  x
)
153 sstr 3426 . . . . . . . . . . . . . 14  |-  ( ( ( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  ( x  o.  x )  /\  (
x  o.  x ) 
C_  u )  -> 
( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  u )
154152, 153mpan 684 . . . . . . . . . . . . 13  |-  ( ( x  o.  x ) 
C_  u  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  u )
155154adantl 473 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  u )
156 inss2 3644 . . . . . . . . . . . . . . 15  |-  ( x  i^i  ( A  X.  A ) )  C_  ( A  X.  A
)
157 coss1 4995 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( ( A  X.  A )  o.  (
x  i^i  ( A  X.  A ) ) ) )
158 coss2 4996 . . . . . . . . . . . . . . . 16  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  (
( A  X.  A
)  o.  ( x  i^i  ( A  X.  A ) ) ) 
C_  ( ( A  X.  A )  o.  ( A  X.  A
) ) )
159157, 158sstrd 3428 . . . . . . . . . . . . . . 15  |-  ( ( x  i^i  ( A  X.  A ) ) 
C_  ( A  X.  A )  ->  (
( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( ( A  X.  A )  o.  ( A  X.  A ) ) )
160156, 159ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( ( A  X.  A )  o.  ( A  X.  A ) )
161 xpidtr 5228 . . . . . . . . . . . . . 14  |-  ( ( A  X.  A )  o.  ( A  X.  A ) )  C_  ( A  X.  A
)
162160, 161sstri 3427 . . . . . . . . . . . . 13  |-  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A
) ) )  C_  ( A  X.  A
)
163162a1i 11 . . . . . . . . . . . 12  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  ( A  X.  A ) )
164155, 163ssind 3647 . . . . . . . . . . 11  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  -> 
( ( x  i^i  ( A  X.  A
) )  o.  (
x  i^i  ( A  X.  A ) ) ) 
C_  ( u  i^i  ( A  X.  A
) ) )
165 id 22 . . . . . . . . . . . . . 14  |-  ( w  =  ( x  i^i  ( A  X.  A
) )  ->  w  =  ( x  i^i  ( A  X.  A
) ) )
166165, 165coeq12d 5004 . . . . . . . . . . . . 13  |-  ( w  =  ( x  i^i  ( A  X.  A
) )  ->  (
w  o.  w )  =  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A ) ) ) )
167166sseq1d 3445 . . . . . . . . . . . 12  |-  ( w  =  ( x  i^i  ( A  X.  A
) )  ->  (
( w  o.  w
)  C_  ( u  i^i  ( A  X.  A
) )  <->  ( (
x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A ) ) )  C_  ( u  i^i  ( A  X.  A
) ) ) )
168167rspcev 3136 . . . . . . . . . . 11  |-  ( ( ( x  i^i  ( A  X.  A ) )  e.  ( Ut  ( A  X.  A ) )  /\  ( ( x  i^i  ( A  X.  A ) )  o.  ( x  i^i  ( A  X.  A ) ) )  C_  ( u  i^i  ( A  X.  A
) ) )  ->  E. w  e.  ( Ut  ( A  X.  A
) ) ( w  o.  w )  C_  ( u  i^i  ( A  X.  A ) ) )
169147, 164, 168syl2anc 673 . . . . . . . . . 10  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  u  e.  U )  /\  x  e.  U )  /\  (
x  o.  x ) 
C_  u )  ->  E. w  e.  ( Ut  ( A  X.  A
) ) ( w  o.  w )  C_  ( u  i^i  ( A  X.  A ) ) )
170 ustexhalf 21303 . . . . . . . . . . 11  |-  ( ( U  e.  (UnifOn `  X )  /\  u  e.  U )  ->  E. x  e.  U  ( x  o.  x )  C_  u
)
171170adantlr 729 . . . . . . . . . 10  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  u  e.  U )  ->  E. x  e.  U  ( x  o.  x )  C_  u
)
172169, 171r19.29a 2918 . . . . . . . . 9  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  u  e.  U )  ->  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  ( u  i^i  ( A  X.  A
) ) )
17394, 98, 95, 172syl21anc 1291 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  ( u  i^i  ( A  X.  A
) ) )
174123sseq2d 3446 . . . . . . . . 9  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  ( (
w  o.  w ) 
C_  v  <->  ( w  o.  w )  C_  (
u  i^i  ( A  X.  A ) ) ) )
175174rexbidv 2892 . . . . . . . 8  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  ( E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v  <->  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  ( u  i^i  ( A  X.  A
) ) ) )
176173, 175mpbird 240 . . . . . . 7  |-  ( ( ( ( ( U  e.  (UnifOn `  X
)  /\  A  C_  X
)  /\  v  e.  ( Ut  ( A  X.  A ) ) )  /\  u  e.  U
)  /\  v  =  ( u  i^i  ( A  X.  A ) ) )  ->  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  v )
177176, 61r19.29a 2918 . . . . . 6  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  E. w  e.  ( Ut  ( A  X.  A
) ) ( w  o.  w )  C_  v )
178125, 142, 1773jca 1210 . . . . 5  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
)
17965, 93, 1783jca 1210 . . . 4  |-  ( ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  /\  v  e.  ( Ut  ( A  X.  A ) ) )  ->  ( A. w  e.  ~P  ( A  X.  A ) ( v 
C_  w  ->  w  e.  ( Ut  ( A  X.  A ) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) )  /\  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
) )
180179ralrimiva 2809 . . 3  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  A. v  e.  ( Ut  ( A  X.  A ) ) ( A. w  e.  ~P  ( A  X.  A
) ( v  C_  w  ->  w  e.  ( Ut  ( A  X.  A
) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A
) )  /\  (
(  _I  |`  A ) 
C_  v  /\  `' v  e.  ( Ut  ( A  X.  A ) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w ) 
C_  v ) ) )
1812, 20, 1803jca 1210 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
( Ut  ( A  X.  A ) )  C_  ~P ( A  X.  A
)  /\  ( A  X.  A )  e.  ( Ut  ( A  X.  A
) )  /\  A. v  e.  ( Ut  ( A  X.  A ) ) ( A. w  e. 
~P  ( A  X.  A ) ( v 
C_  w  ->  w  e.  ( Ut  ( A  X.  A ) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) )  /\  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
) ) )
182 isust 21296 . . 3  |-  ( A  e.  _V  ->  (
( Ut  ( A  X.  A ) )  e.  (UnifOn `  A )  <->  ( ( Ut  ( A  X.  A ) )  C_  ~P ( A  X.  A
)  /\  ( A  X.  A )  e.  ( Ut  ( A  X.  A
) )  /\  A. v  e.  ( Ut  ( A  X.  A ) ) ( A. w  e. 
~P  ( A  X.  A ) ( v 
C_  w  ->  w  e.  ( Ut  ( A  X.  A ) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) )  /\  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
) ) ) )
18313, 182syl 17 . 2  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  (
( Ut  ( A  X.  A ) )  e.  (UnifOn `  A )  <->  ( ( Ut  ( A  X.  A ) )  C_  ~P ( A  X.  A
)  /\  ( A  X.  A )  e.  ( Ut  ( A  X.  A
) )  /\  A. v  e.  ( Ut  ( A  X.  A ) ) ( A. w  e. 
~P  ( A  X.  A ) ( v 
C_  w  ->  w  e.  ( Ut  ( A  X.  A ) ) )  /\  A. w  e.  ( Ut  ( A  X.  A ) ) ( v  i^i  w )  e.  ( Ut  ( A  X.  A ) )  /\  ( (  _I  |`  A )  C_  v  /\  `' v  e.  ( Ut  ( A  X.  A
) )  /\  E. w  e.  ( Ut  ( A  X.  A ) ) ( w  o.  w
)  C_  v )
) ) ) )
184181, 183mpbird 240 1  |-  ( ( U  e.  (UnifOn `  X )  /\  A  C_  X )  ->  ( Ut  ( A  X.  A
) )  e.  (UnifOn `  A ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 189    /\ wa 376    /\ w3a 1007    = wceq 1452    e. wcel 1904   A.wral 2756   E.wrex 2757   _Vcvv 3031    u. cun 3388    i^i cin 3389    C_ wss 3390   ~Pcpw 3942   class class class wbr 4395    _I cid 4749    X. cxp 4837   `'ccnv 4838   dom cdm 4839    |` cres 4841    o. ccom 4843   ` cfv 5589  (class class class)co 6308   ↾t crest 15397  UnifOncust 21292
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-id 4754  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-1st 6812  df-2nd 6813  df-rest 15399  df-ust 21293
This theorem is referenced by:  restutop  21330  restutopopn  21331  ressust  21357  ressusp  21358  trcfilu  21387  cfiluweak  21388
  Copyright terms: Public domain W3C validator