MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truorfal Structured version   Unicode version

Theorem truorfal 1399
Description: A  \/ identity. (Contributed by Anthony Hart, 22-Oct-2010.)
Assertion
Ref Expression
truorfal  |-  ( ( T.  \/ F.  )  <-> T.  )

Proof of Theorem truorfal
StepHypRef Expression
1 tru 1374 . . 3  |- T.
21orci 390 . 2  |-  ( T.  \/ F.  )
32bitru 1382 1  |-  ( ( T.  \/ F.  )  <-> T.  )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    \/ wo 368   T. wtru 1371   F. wfal 1375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-or 370  df-tru 1373
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator