MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  truimfal Structured version   Unicode version

Theorem truimfal 1397
Description: A  -> identity. (Contributed by Anthony Hart, 22-Oct-2010.) (Proof shortened by Andrew Salmon, 13-May-2011.)
Assertion
Ref Expression
truimfal  |-  ( ( T.  -> F.  )  <-> F.  )

Proof of Theorem truimfal
StepHypRef Expression
1 tru 1368 . . 3  |- T.
21a1bi 337 . 2  |-  ( F.  <-> 
( T.  -> F.  ) )
32bicomi 202 1  |-  ( ( T.  -> F.  )  <-> F.  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184   T. wtru 1365   F. wfal 1369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 185  df-tru 1367
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator