Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trsbcVD Structured version   Unicode version

Theorem trsbcVD 33385
Description: Formula-building inference rule for class substitution, substituting a class variable for the setvar variable of the transitivity predicate. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. trsbc 33019 is trsbcVD 33385 without virtual deductions and was automatically derived from trsbcVD 33385.
1::  |-  (. A  e.  B  ->.  A  e.  B ).
2:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
3:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  x  <->  y  e.  A ) ).
4:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  x  <->  z  e.  A ) ).
5:1,2,3,4:  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
6:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) ) ).
7:5,6:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
8::  |-  ( ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
9:7,8:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
10::  |-  ( ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
11:10:  |-  A. x ( ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
12:1,11:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
13:9,12:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
14:13:  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
15:14:  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
16:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
17:15,16:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
18:17:  |-  (. A  e.  B  ->.  A. z ( [. A  /  x ]. A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
19:18:  |-  (. A  e.  B  ->.  ( A. z [. A  /  x ]. A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
20:1:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
21:19,20:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
22::  |-  ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
23:21,22:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( (  z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A ) ).
24::  |-  ( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
25:24:  |-  A. x ( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
26:1,25:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
27:23,26:  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  Tr  A ) ).
qed:27:  |-  ( A  e.  B  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A ) )
(Contributed by Alan Sare, 18-Mar-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
trsbcVD  |-  ( A  e.  B  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A
) )
Distinct variable group:    x, A
Allowed substitution hint:    B( x)

Proof of Theorem trsbcVD
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 idn1 33059 . . . . . . . . . . . . . 14  |-  (. A  e.  B  ->.  A  e.  B ).
2 biidd 237 . . . . . . . . . . . . . . . 16  |-  ( x  =  A  ->  (
z  e.  y  <->  z  e.  y ) )
32sbcieg 3344 . . . . . . . . . . . . . . 15  |-  ( A  e.  B  ->  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) )
41, 3e1a 33121 . . . . . . . . . . . . . 14  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  y  <->  z  e.  y ) ).
5 sbcel2gv 3378 . . . . . . . . . . . . . . 15  |-  ( A  e.  B  ->  ( [. A  /  x ]. y  e.  x  <->  y  e.  A ) )
61, 5e1a 33121 . . . . . . . . . . . . . 14  |-  (. A  e.  B  ->.  ( [. A  /  x ]. y  e.  x  <->  y  e.  A
) ).
7 sbcel2gv 3378 . . . . . . . . . . . . . . 15  |-  ( A  e.  B  ->  ( [. A  /  x ]. z  e.  x  <->  z  e.  A ) )
81, 7e1a 33121 . . . . . . . . . . . . . 14  |-  (. A  e.  B  ->.  ( [. A  /  x ]. z  e.  x  <->  z  e.  A
) ).
9 imbi13 32998 . . . . . . . . . . . . . . 15  |-  ( (
[. A  /  x ]. z  e.  y  <->  z  e.  y )  -> 
( ( [. A  /  x ]. y  e.  x  <->  y  e.  A
)  ->  ( ( [. A  /  x ]. z  e.  x  <->  z  e.  A )  -> 
( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) ) )
109a1i 11 . . . . . . . . . . . . . 14  |-  ( A  e.  B  ->  (
( [. A  /  x ]. z  e.  y  <->  z  e.  y )  -> 
( ( [. A  /  x ]. y  e.  x  <->  y  e.  A
)  ->  ( ( [. A  /  x ]. z  e.  x  <->  z  e.  A )  -> 
( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) ) ) )
111, 4, 6, 8, 10e1111 33169 . . . . . . . . . . . . 13  |-  (. A  e.  B  ->.  ( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
12 sbcim2g 33017 . . . . . . . . . . . . . 14  |-  ( A  e.  B  ->  ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) ) )
131, 12e1a 33121 . . . . . . . . . . . . 13  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) ) ).
14 bibi1 327 . . . . . . . . . . . . . 14  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) )  ->  ( ( [. A  /  x ]. (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )  <-> 
( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) )
1514biimprcd 225 . . . . . . . . . . . . 13  |-  ( ( ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x
) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )  ->  ( ( [. A  /  x ]. (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( [. A  /  x ]. z  e.  y  ->  ( [. A  /  x ]. y  e.  x  ->  [. A  /  x ]. z  e.  x ) ) )  ->  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ) )
1611, 13, 15e11 33182 . . . . . . . . . . . 12  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) ) ).
17 pm3.31 445 . . . . . . . . . . . . 13  |-  ( ( z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  ->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
18 pm3.3 444 . . . . . . . . . . . . 13  |-  ( ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A )  ->  (
z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) ) )
1917, 18impbii 188 . . . . . . . . . . . 12  |-  ( ( z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
20 bibi1 327 . . . . . . . . . . . . 13  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )  ->  ( ( [. A  /  x ]. (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  <->  ( (
z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
2120biimprd 223 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( z  e.  y  ->  ( y  e.  A  ->  z  e.  A ) ) )  ->  ( ( ( z  e.  y  -> 
( y  e.  A  ->  z  e.  A ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
2216, 19, 21e10 33188 . . . . . . . . . . 11  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
23 pm3.31 445 . . . . . . . . . . . . . 14  |-  ( ( z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  ->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
24 pm3.3 444 . . . . . . . . . . . . . 14  |-  ( ( ( z  e.  y  /\  y  e.  x
)  ->  z  e.  x )  ->  (
z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) ) )
2523, 24impbii 188 . . . . . . . . . . . . 13  |-  ( ( z  e.  y  -> 
( y  e.  x  ->  z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
2625ax-gen 1603 . . . . . . . . . . . 12  |-  A. x
( ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( (
z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
27 sbcbi 33018 . . . . . . . . . . . 12  |-  ( A  e.  B  ->  ( A. x ( ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ) )
281, 26, 27e10 33188 . . . . . . . . . . 11  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
29 bitr3 32988 . . . . . . . . . . . 12  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( ( [. A  /  x ]. ( z  e.  y  ->  (
y  e.  x  -> 
z  e.  x ) )  <->  ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
3029com12 31 . . . . . . . . . . 11  |-  ( (
[. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  ->  ( ( [. A  /  x ]. ( z  e.  y  ->  ( y  e.  x  ->  z  e.  x ) )  <->  [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
3122, 28, 30e11 33182 . . . . . . . . . 10  |-  (. A  e.  B  ->.  ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <-> 
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
3231gen11 33110 . . . . . . . . 9  |-  (. A  e.  B  ->.  A. y ( [. A  /  x ]. (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x )  <->  ( (
z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
33 albi 1624 . . . . . . . . 9  |-  ( A. y ( [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <-> 
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( A. y [. A  /  x ]. (
( z  e.  y  /\  y  e.  x
)  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
3432, 33e1a 33121 . . . . . . . 8  |-  (. A  e.  B  ->.  ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
35 sbcalgOLD 3364 . . . . . . . . 9  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
361, 35e1a 33121 . . . . . . . 8  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
37 bibi1 327 . . . . . . . . 9  |-  ( (
[. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  <->  ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
3837biimprcd 225 . . . . . . . 8  |-  ( ( A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y [. A  /  x ]. ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ) )
3934, 36, 38e11 33182 . . . . . . 7  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
4039gen11 33110 . . . . . 6  |-  (. A  e.  B  ->.  A. z ( [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
41 albi 1624 . . . . . 6  |-  ( A. z ( [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )
4240, 41e1a 33121 . . . . 5  |-  (. A  e.  B  ->.  ( A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) ) ).
43 sbcalgOLD 3364 . . . . . 6  |-  ( A  e.  B  ->  ( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) )
441, 43e1a 33121 . . . . 5  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ).
45 bibi1 327 . . . . . 6  |-  ( (
[. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  ->  ( ( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  <->  ( A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) ) ) )
4645biimprcd 225 . . . . 5  |-  ( ( A. z [. A  /  x ]. A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z [. A  /  x ]. A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  ->  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) ) ) )
4742, 44, 46e11 33182 . . . 4  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) ).
48 dftr2 4528 . . . 4  |-  ( Tr  A  <->  A. z A. y
( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )
49 biantr 929 . . . . 5  |-  ( ( ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  /\  ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) ) )  ->  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
) )
5049ex 434 . . . 4  |-  ( (
[. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A )  ->  z  e.  A ) )  -> 
( ( Tr  A  <->  A. z A. y ( ( z  e.  y  /\  y  e.  A
)  ->  z  e.  A ) )  -> 
( [. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
) ) )
5147, 48, 50e10 33188 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
) ).
52 dftr2 4528 . . . . 5  |-  ( Tr  x  <->  A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
5352ax-gen 1603 . . . 4  |-  A. x
( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )
54 sbcbi 33018 . . . 4  |-  ( A  e.  B  ->  ( A. x ( Tr  x  <->  A. z A. y ( ( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) )  -> 
( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) ) ) )
551, 53, 54e10 33188 . . 3  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x
)  ->  z  e.  x ) ) ).
56 bibi1 327 . . . 4  |-  ( (
[. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( ( [. A  /  x ]. Tr  x  <->  Tr  A )  <->  ( [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A ) ) )
5756biimprcd 225 . . 3  |-  ( (
[. A  /  x ]. A. z A. y
( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x )  <->  Tr  A
)  ->  ( ( [. A  /  x ]. Tr  x  <->  [. A  /  x ]. A. z A. y ( ( z  e.  y  /\  y  e.  x )  ->  z  e.  x ) )  -> 
( [. A  /  x ]. Tr  x  <->  Tr  A
) ) )
5851, 55, 57e11 33182 . 2  |-  (. A  e.  B  ->.  ( [. A  /  x ]. Tr  x  <->  Tr  A ) ).
5958in1 33056 1  |-  ( A  e.  B  ->  ( [. A  /  x ]. Tr  x  <->  Tr  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369   A.wal 1379    = wceq 1381    e. wcel 1802   [.wsbc 3311   Tr wtr 4526
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 974  df-tru 1384  df-ex 1598  df-nf 1602  df-sb 1725  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-v 3095  df-sbc 3312  df-in 3465  df-ss 3472  df-uni 4231  df-tr 4527  df-vd1 33055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator