Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredss Structured version   Unicode version

Theorem trpredss 27698
Description: The transitive predecessors form a subset of the base class. (Contributed by Scott Fenton, 20-Feb-2011.)
Assertion
Ref Expression
trpredss  |-  ( Pred ( R ,  A ,  X )  e.  B  -> 
TrPred ( R ,  A ,  X )  C_  A
)

Proof of Theorem trpredss
Dummy variables  a 
i  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 27688 . 2  |-  TrPred ( R ,  A ,  X
)  =  U_ i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )
2 trpredlem1 27696 . . . 4  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
32ralrimivw 2805 . . 3  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  A. i  e.  om  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
4 iunss 4216 . . 3  |-  ( U_ i  e.  om  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A  <->  A. i  e.  om  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
53, 4sylibr 212 . 2  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  U_ i  e.  om  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  A
)
61, 5syl5eqss 3405 1  |-  ( Pred ( R ,  A ,  X )  e.  B  -> 
TrPred ( R ,  A ,  X )  C_  A
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1756   A.wral 2720   _Vcvv 2977    C_ wss 3333   U_ciun 4176    e. cmpt 4355    |` cres 4847   ` cfv 5423   omcom 6481   reccrdg 6870   Predcpred 27629   TrPredctrpred 27686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4418  ax-nul 4426  ax-pow 4475  ax-pr 4536  ax-un 6377
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2573  df-ne 2613  df-ral 2725  df-rex 2726  df-reu 2727  df-rab 2729  df-v 2979  df-sbc 3192  df-csb 3294  df-dif 3336  df-un 3338  df-in 3340  df-ss 3347  df-pss 3349  df-nul 3643  df-if 3797  df-pw 3867  df-sn 3883  df-pr 3885  df-tp 3887  df-op 3889  df-uni 4097  df-iun 4178  df-br 4298  df-opab 4356  df-mpt 4357  df-tr 4391  df-eprel 4637  df-id 4641  df-po 4646  df-so 4647  df-fr 4684  df-we 4686  df-ord 4727  df-on 4728  df-lim 4729  df-suc 4730  df-xp 4851  df-rel 4852  df-cnv 4853  df-co 4854  df-dm 4855  df-rn 4856  df-res 4857  df-ima 4858  df-iota 5386  df-fun 5425  df-fn 5426  df-f 5427  df-f1 5428  df-fo 5429  df-f1o 5430  df-fv 5431  df-om 6482  df-recs 6837  df-rdg 6871  df-pred 27630  df-trpred 27687
This theorem is referenced by:  trpredelss  27701  dftrpred3g  27702  frmin  27708
  Copyright terms: Public domain W3C validator