Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredpred Structured version   Unicode version

Theorem trpredpred 30256
Description: Assuming it exists, the predecessor class is a subset of the transitive predecessors. (Contributed by Scott Fenton, 18-Feb-2011.)
Assertion
Ref Expression
trpredpred  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  Pred ( R ,  A ,  X )  C_ 
TrPred ( R ,  A ,  X ) )

Proof of Theorem trpredpred
Dummy variables  a 
y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fr0g 7161 . . . . . 6  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
2 frfnom 7160 . . . . . . 7  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  Fn  om
3 peano1 6726 . . . . . . 7  |-  (/)  e.  om
4 fnbrfvb 5921 . . . . . . 7  |-  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )  Fn 
om  /\  (/)  e.  om )  ->  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  (/) )  = 
Pred ( R ,  A ,  X )  <->  (/) ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) Pred ( R ,  A ,  X
) ) )
52, 3, 4mp2an 676 . . . . . 6  |-  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X )  <->  (/) ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) Pred ( R ,  A ,  X
) )
61, 5sylib 199 . . . . 5  |-  ( Pred ( R ,  A ,  X )  e.  B  -> 
(/) ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) Pred ( R ,  A ,  X ) )
7 0ex 4557 . . . . . 6  |-  (/)  e.  _V
8 breq1 4429 . . . . . 6  |-  ( z  =  (/)  ->  ( z ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) Pred ( R ,  A ,  X )  <->  (/) ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) Pred ( R ,  A ,  X
) ) )
97, 8spcev 3179 . . . . 5  |-  ( (/) ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) Pred ( R ,  A ,  X
)  ->  E. z 
z ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) Pred ( R ,  A ,  X ) )
106, 9syl 17 . . . 4  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  E. z  z ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) Pred ( R ,  A ,  X
) )
11 elrng 5046 . . . 4  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  ( Pred ( R ,  A ,  X
)  e.  ran  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  <->  E. z  z ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) Pred ( R ,  A ,  X
) ) )
1210, 11mpbird 235 . . 3  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  Pred ( R ,  A ,  X )  e.  ran  ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) )
13 elssuni 4251 . . 3  |-  ( Pred ( R ,  A ,  X )  e.  ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )  ->  Pred ( R ,  A ,  X )  C_  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) )
1412, 13syl 17 . 2  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  Pred ( R ,  A ,  X )  C_ 
U. ran  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) )
15 df-trpred 30246 . 2  |-  TrPred ( R ,  A ,  X
)  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )
1614, 15syl6sseqr 3517 1  |-  ( Pred ( R ,  A ,  X )  e.  B  ->  Pred ( R ,  A ,  X )  C_ 
TrPred ( R ,  A ,  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 187    = wceq 1437   E.wex 1659    e. wcel 1870   _Vcvv 3087    C_ wss 3442   (/)c0 3767   U.cuni 4222   U_ciun 4302   class class class wbr 4426    |-> cmpt 4484   ran crn 4855    |` cres 4856   Predcpred 5398    Fn wfn 5596   ` cfv 5601   omcom 6706   reccrdg 7135   TrPredctrpred 30245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-trpred 30246
This theorem is referenced by:  dftrpred3g  30261  trpredpo  30263  frmin  30267
  Copyright terms: Public domain W3C validator