Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredmintr Structured version   Visualization version   Unicode version

Theorem trpredmintr 30465
Description: The transitive predecessors form the smallest class transitive in  R and  A. That is, if  B is another  R,  A transitive class containing  Pred ( R ,  A ,  X ), then  TrPred ( R ,  A ,  X )  C_  B (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredmintr  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  TrPred ( R ,  A ,  X
)  C_  B )
Distinct variable groups:    y, A    y, R    y, X    y, B

Proof of Theorem trpredmintr
Dummy variables  a 
c  d  i  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dftrpred2 30453 . 2  |-  TrPred ( R ,  A ,  X
)  =  U_ i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i )
2 fveq2 5863 . . . . . . . 8  |-  ( j  =  (/)  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j )  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  (/) ) )
32sseq1d 3458 . . . . . . 7  |-  ( j  =  (/)  ->  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B  <->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  B )
)
43imbi2d 318 . . . . . 6  |-  ( j  =  (/)  ->  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  B )
) )
5 fveq2 5863 . . . . . . . 8  |-  ( j  =  k  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) )
65sseq1d 3458 . . . . . . 7  |-  ( j  =  k  ->  (
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B  <->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )
76imbi2d 318 . . . . . 6  |-  ( j  =  k  ->  (
( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) ) )
8 fveq2 5863 . . . . . . . 8  |-  ( j  =  suc  k  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k ) )
98sseq1d 3458 . . . . . . 7  |-  ( j  =  suc  k  -> 
( ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  j ) 
C_  B  <->  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  suc  k
)  C_  B )
)
109imbi2d 318 . . . . . 6  |-  ( j  =  suc  k  -> 
( ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  C_  B
) ) )
11 fveq2 5863 . . . . . . . 8  |-  ( j  =  i  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  =  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i ) )
1211sseq1d 3458 . . . . . . 7  |-  ( j  =  i  ->  (
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B  <->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
) )
1312imbi2d 318 . . . . . 6  |-  ( j  =  i  ->  (
( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  j )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
) ) )
14 setlikespec 5400 . . . . . . . . 9  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  e.  _V )
15 fr0g 7150 . . . . . . . . 9  |-  ( Pred ( R ,  A ,  X )  e.  _V  ->  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
1614, 15syl 17 . . . . . . . 8  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
1716adantr 467 . . . . . . 7  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  =  Pred ( R ,  A ,  X ) )
18 simprr 765 . . . . . . 7  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  Pred ( R ,  A ,  X )  C_  B
)
1917, 18eqsstrd 3465 . . . . . 6  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  (/) )  C_  B )
20 fvex 5873 . . . . . . . . . . 11  |-  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  e.  _V
21 trpredlem1 30461 . . . . . . . . . . . . . . . 16  |-  ( Pred ( R ,  A ,  X )  e.  _V  ->  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  A
)
2214, 21syl 17 . . . . . . . . . . . . . . 15  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  A
)
2322sseld 3430 . . . . . . . . . . . . . 14  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  ->  y  e.  A
) )
24 setlikespec 5400 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  A  /\  R Se  A )  ->  Pred ( R ,  A , 
y )  e.  _V )
2524expcom 437 . . . . . . . . . . . . . . 15  |-  ( R Se  A  ->  ( y  e.  A  ->  Pred ( R ,  A , 
y )  e.  _V ) )
2625adantl 468 . . . . . . . . . . . . . 14  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  A  ->  Pred ( R ,  A ,  y )  e. 
_V ) )
2723, 26syld 45 . . . . . . . . . . . . 13  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  ->  Pred ( R ,  A ,  y )  e.  _V ) )
2827ralrimiv 2799 . . . . . . . . . . . 12  |-  ( ( X  e.  A  /\  R Se  A )  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )
2928ad2antrr 731 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )
30 iunexg 6766 . . . . . . . . . . 11  |-  ( ( ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  e.  _V  /\ 
A. y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )  ->  U_ y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )
3120, 29, 30sylancr 668 . . . . . . . . . 10  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  U_ y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  e.  _V )
32 nfcv 2591 . . . . . . . . . . 11  |-  F/_ a Pred ( R ,  A ,  X )
33 nfcv 2591 . . . . . . . . . . 11  |-  F/_ a
k
34 nfcv 2591 . . . . . . . . . . 11  |-  F/_ a U_ y  e.  (
( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )
35 eqid 2450 . . . . . . . . . . 11  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )
36 predeq3 5383 . . . . . . . . . . . . . . . . . 18  |-  ( y  =  d  ->  Pred ( R ,  A , 
y )  =  Pred ( R ,  A , 
d ) )
3736cbviunv 4316 . . . . . . . . . . . . . . . . 17  |-  U_ y  e.  a  Pred ( R ,  A ,  y )  =  U_ d  e.  a  Pred ( R ,  A ,  d )
38 iuneq1 4291 . . . . . . . . . . . . . . . . 17  |-  ( a  =  c  ->  U_ d  e.  a  Pred ( R ,  A ,  d )  =  U_ d  e.  c  Pred ( R ,  A ,  d ) )
3937, 38syl5eq 2496 . . . . . . . . . . . . . . . 16  |-  ( a  =  c  ->  U_ y  e.  a  Pred ( R ,  A ,  y )  =  U_ d  e.  c  Pred ( R ,  A ,  d ) )
4039cbvmptv 4494 . . . . . . . . . . . . . . 15  |-  ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) )  =  ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) )
41 rdgeq1 7126 . . . . . . . . . . . . . . 15  |-  ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) )  =  ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) )  ->  rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) ) )
42 reseq1 5098 . . . . . . . . . . . . . . 15  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  -> 
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )  =  ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) )
4340, 41, 42mp2b 10 . . . . . . . . . . . . . 14  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om )
4443fveq1i 5864 . . . . . . . . . . . . 13  |-  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  =  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
4544eqeq2i 2462 . . . . . . . . . . . 12  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  <-> 
a  =  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k ) )
46 iuneq1 4291 . . . . . . . . . . . 12  |-  ( a  =  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  ->  U_ y  e.  a 
Pred ( R ,  A ,  y )  =  U_ y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y ) )
4745, 46sylbi 199 . . . . . . . . . . 11  |-  ( a  =  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )  ->  U_ y  e.  a 
Pred ( R ,  A ,  y )  =  U_ y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y ) )
4832, 33, 34, 35, 47frsucmpt 7152 . . . . . . . . . 10  |-  ( ( k  e.  om  /\  U_ y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A ,  d ) ) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
Pred ( R ,  A ,  y )  e.  _V )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  =  U_ y  e.  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
Pred ( R ,  A ,  y )
)
4931, 48sylan2 477 . . . . . . . . 9  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  =  U_ y  e.  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
Pred ( R ,  A ,  y )
)
5044sseq1i 3455 . . . . . . . . . . . 12  |-  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B  <->  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)
5150anbi2i 699 . . . . . . . . . . 11  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  <->  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )
52 nfv 1760 . . . . . . . . . . . . . . 15  |-  F/ y ( X  e.  A  /\  R Se  A )
53 nfra1 2768 . . . . . . . . . . . . . . . 16  |-  F/ y A. y  e.  B  Pred ( R ,  A ,  y )  C_  B
54 nfv 1760 . . . . . . . . . . . . . . . 16  |-  F/ y
Pred ( R ,  A ,  X )  C_  B
5553, 54nfan 2010 . . . . . . . . . . . . . . 15  |-  F/ y ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
)
5652, 55nfan 2010 . . . . . . . . . . . . . 14  |-  F/ y ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )
57 nfv 1760 . . . . . . . . . . . . . 14  |-  F/ y ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
5856, 57nfan 2010 . . . . . . . . . . . . 13  |-  F/ y ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)
59 ssel 3425 . . . . . . . . . . . . . 14  |-  ( ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B  ->  ( y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  ->  y  e.  B ) )
60 rsp 2753 . . . . . . . . . . . . . . 15  |-  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  ->  ( y  e.  B  ->  Pred ( R ,  A ,  y )  C_  B ) )
6160ad2antrl 733 . . . . . . . . . . . . . 14  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
y  e.  B  ->  Pred ( R ,  A ,  y )  C_  B ) )
6259, 61sylan9r 663 . . . . . . . . . . . . 13  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  ( y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  ->  Pred ( R ,  A , 
y )  C_  B
) )
6358, 62ralrimi 2787 . . . . . . . . . . . 12  |-  ( ( ( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
6463adantl 468 . . . . . . . . . . 11  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
6551, 64sylan2b 478 . . . . . . . . . 10  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  A. y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
66 iunss 4318 . . . . . . . . . 10  |-  ( U_ y  e.  ( ( rec ( ( c  e. 
_V  |->  U_ d  e.  c 
Pred ( R ,  A ,  d )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k )
Pred ( R ,  A ,  y )  C_  B  <->  A. y  e.  ( ( rec ( ( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
6765, 66sylibr 216 . . . . . . . . 9  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  U_ y  e.  ( ( rec (
( c  e.  _V  |->  U_ d  e.  c  Pred ( R ,  A , 
d ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k ) Pred ( R ,  A , 
y )  C_  B
)
6849, 67eqsstrd 3465 . . . . . . . 8  |-  ( ( k  e.  om  /\  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  /\  ( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  C_  B
)
6968exp32 609 . . . . . . 7  |-  ( k  e.  om  ->  (
( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  k ) 
C_  B  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  C_  B
) ) )
7069a2d 29 . . . . . 6  |-  ( k  e.  om  ->  (
( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  k )  C_  B
)  ->  ( (
( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  suc  k )  C_  B
) ) )
714, 7, 10, 13, 19, 70finds 6716 . . . . 5  |-  ( i  e.  om  ->  (
( ( X  e.  A  /\  R Se  A
)  /\  ( A. y  e.  B  Pred ( R ,  A , 
y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B ) )  -> 
( ( rec (
( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
) )
7271com12 32 . . . 4  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  (
i  e.  om  ->  ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
) )
7372ralrimiv 2799 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  A. i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  B )
74 iunss 4318 . . 3  |-  ( U_ i  e.  om  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B  <->  A. i  e.  om  (
( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om ) `  i )  C_  B
)
7573, 74sylibr 216 . 2  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  U_ i  e.  om  ( ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om ) `  i ) 
C_  B )
761, 75syl5eqss 3475 1  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  ( A. y  e.  B  Pred ( R ,  A ,  y )  C_  B  /\  Pred ( R ,  A ,  X )  C_  B
) )  ->  TrPred ( R ,  A ,  X
)  C_  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 371    = wceq 1443    e. wcel 1886   A.wral 2736   _Vcvv 3044    C_ wss 3403   (/)c0 3730   U_ciun 4277    |-> cmpt 4460   Se wse 4790    |` cres 4835   Predcpred 5378   suc csuc 5424   ` cfv 5581   omcom 6689   reccrdg 7124   TrPredctrpred 30451
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-rep 4514  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-ral 2741  df-rex 2742  df-reu 2743  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-pss 3419  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-tp 3972  df-op 3974  df-uni 4198  df-iun 4279  df-br 4402  df-opab 4461  df-mpt 4462  df-tr 4497  df-eprel 4744  df-id 4748  df-po 4754  df-so 4755  df-fr 4792  df-se 4793  df-we 4794  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-pred 5379  df-ord 5425  df-on 5426  df-lim 5427  df-suc 5428  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-om 6690  df-wrecs 7025  df-recs 7087  df-rdg 7125  df-trpred 30452
This theorem is referenced by:  trpredelss  30466  dftrpred3g  30467  trpredpo  30469
  Copyright terms: Public domain W3C validator