Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredex Structured version   Unicode version

Theorem trpredex 30265
Description: The transitive predecessors of a relation form a set (NOTE: this is the first theorem in the transitive predecessor series that requires infinity). (Contributed by Scott Fenton, 18-Feb-2011.)
Assertion
Ref Expression
trpredex  |-  TrPred ( R ,  A ,  X
)  e.  _V

Proof of Theorem trpredex
Dummy variables  a 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trpred 30246 . 2  |-  TrPred ( R ,  A ,  X
)  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )
2 frfnom 7160 . . . . 5  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  Fn  om
3 omex 8148 . . . . 5  |-  om  e.  _V
4 fnex 6147 . . . . 5  |-  ( ( ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  X )
)  |`  om )  Fn 
om  /\  om  e.  _V )  ->  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  e.  _V )
52, 3, 4mp2an 676 . . . 4  |-  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  e.  _V
65rnex 6741 . . 3  |-  ran  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  e.  _V
76uniex 6601 . 2  |-  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )  e.  _V
81, 7eqeltri 2513 1  |-  TrPred ( R ,  A ,  X
)  e.  _V
Colors of variables: wff setvar class
Syntax hints:    e. wcel 1870   _Vcvv 3087   U.cuni 4222   U_ciun 4302    |-> cmpt 4484   ran crn 4855    |` cres 4856   Predcpred 5398    Fn wfn 5596   omcom 6706   reccrdg 7135   TrPredctrpred 30245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-8 1872  ax-9 1874  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407  ax-rep 4538  ax-sep 4548  ax-nul 4556  ax-pow 4603  ax-pr 4661  ax-un 6597  ax-inf2 8146
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-eu 2270  df-mo 2271  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ne 2627  df-ral 2787  df-rex 2788  df-reu 2789  df-rab 2791  df-v 3089  df-sbc 3306  df-csb 3402  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-pss 3458  df-nul 3768  df-if 3916  df-pw 3987  df-sn 4003  df-pr 4005  df-tp 4007  df-op 4009  df-uni 4223  df-iun 4304  df-br 4427  df-opab 4485  df-mpt 4486  df-tr 4521  df-eprel 4765  df-id 4769  df-po 4775  df-so 4776  df-fr 4813  df-we 4815  df-xp 4860  df-rel 4861  df-cnv 4862  df-co 4863  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-ord 5445  df-on 5446  df-lim 5447  df-suc 5448  df-iota 5565  df-fun 5603  df-fn 5604  df-f 5605  df-f1 5606  df-fo 5607  df-f1o 5608  df-fv 5609  df-om 6707  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-trpred 30246
This theorem is referenced by:  frmin  30267
  Copyright terms: Public domain W3C validator