Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredeq3 Structured version   Unicode version

Theorem trpredeq3 30250
Description: Equality theorem for transitive predecessors. (Contributed by Scott Fenton, 2-Feb-2011.)
Assertion
Ref Expression
trpredeq3  |-  ( X  =  Y  ->  TrPred ( R ,  A ,  X
)  =  TrPred ( R ,  A ,  Y
) )

Proof of Theorem trpredeq3
Dummy variables  a 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 predeq3 5403 . . . . . 6  |-  ( X  =  Y  ->  Pred ( R ,  A ,  X )  =  Pred ( R ,  A ,  Y ) )
2 rdgeq2 7138 . . . . . 6  |-  ( Pred ( R ,  A ,  X )  =  Pred ( R ,  A ,  Y )  ->  rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  Y ) ) )
31, 2syl 17 . . . . 5  |-  ( X  =  Y  ->  rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  =  rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  Y ) ) )
43reseq1d 5124 . . . 4  |-  ( X  =  Y  ->  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ( rec ( ( a  e. 
_V  |->  U_ y  e.  a 
Pred ( R ,  A ,  y )
) ,  Pred ( R ,  A ,  Y ) )  |`  om ) )
54rneqd 5082 . . 3  |-  ( X  =  Y  ->  ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  Y ) )  |`  om ) )
65unieqd 4232 . 2  |-  ( X  =  Y  ->  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A , 
y ) ) , 
Pred ( R ,  A ,  Y )
)  |`  om ) )
7 df-trpred 30246 . 2  |-  TrPred ( R ,  A ,  X
)  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  X ) )  |`  om )
8 df-trpred 30246 . 2  |-  TrPred ( R ,  A ,  Y
)  =  U. ran  ( rec ( ( a  e.  _V  |->  U_ y  e.  a  Pred ( R ,  A ,  y ) ) ,  Pred ( R ,  A ,  Y ) )  |`  om )
96, 7, 83eqtr4g 2495 1  |-  ( X  =  Y  ->  TrPred ( R ,  A ,  X
)  =  TrPred ( R ,  A ,  Y
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1437   _Vcvv 3087   U.cuni 4222   U_ciun 4302    |-> cmpt 4484   ran crn 4855    |` cres 4856   Predcpred 5398   omcom 6706   reccrdg 7135   TrPredctrpred 30245
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-11 1894  ax-12 1907  ax-13 2055  ax-ext 2407
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1790  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2579  df-ral 2787  df-rex 2788  df-rab 2791  df-v 3089  df-dif 3445  df-un 3447  df-in 3449  df-ss 3456  df-nul 3768  df-if 3916  df-sn 4003  df-pr 4005  df-op 4009  df-uni 4223  df-br 4427  df-opab 4485  df-mpt 4486  df-xp 4860  df-cnv 4862  df-dm 4864  df-rn 4865  df-res 4866  df-ima 4867  df-pred 5399  df-iota 5565  df-fv 5609  df-wrecs 7036  df-recs 7098  df-rdg 7136  df-trpred 30246
This theorem is referenced by:  trpredeq3d  30253  dftrpred3g  30261
  Copyright terms: Public domain W3C validator