Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trpredelss Structured version   Unicode version

Theorem trpredelss 28878
Description: Given a transitive predecessor  Y of  X, the transitive predecessors of  Y are a subset of the transitive predecessors of  X. (Contributed by Scott Fenton, 25-Apr-2012.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
trpredelss  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  TrPred ( R ,  A ,  X
)  ->  TrPred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) ) )

Proof of Theorem trpredelss
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 setlikespec 28830 . . . . 5  |-  ( ( X  e.  A  /\  R Se  A )  ->  Pred ( R ,  A ,  X )  e.  _V )
2 trpredss 28875 . . . . 5  |-  ( Pred ( R ,  A ,  X )  e.  _V  -> 
TrPred ( R ,  A ,  X )  C_  A
)
31, 2syl 16 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  TrPred ( R ,  A ,  X
)  C_  A )
43sselda 3497 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  Y  e.  A )
5 simplr 754 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  R Se  A )
6 trpredtr 28876 . . . . 5  |-  ( ( X  e.  A  /\  R Se  A )  ->  (
y  e.  TrPred ( R ,  A ,  X
)  ->  Pred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X
) ) )
76ralrimiv 2869 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  A. y  e.  TrPred  ( R ,  A ,  X ) Pred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X ) )
87adantr 465 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  A. y  e.  TrPred  ( R ,  A ,  X ) Pred ( R ,  A ,  y )  C_  TrPred ( R ,  A ,  X ) )
9 trpredtr 28876 . . . 4  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  TrPred ( R ,  A ,  X
)  ->  Pred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) ) )
109imp 429 . . 3  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  Pred ( R ,  A ,  Y )  C_  TrPred ( R ,  A ,  X
) )
11 trpredmintr 28877 . . 3  |-  ( ( ( Y  e.  A  /\  R Se  A )  /\  ( A. y  e. 
TrPred  ( R ,  A ,  X ) Pred ( R ,  A , 
y )  C_  TrPred ( R ,  A ,  X
)  /\  Pred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) ) )  ->  TrPred ( R ,  A ,  Y )  C_  TrPred ( R ,  A ,  X
) )
124, 5, 8, 10, 11syl22anc 1224 . 2  |-  ( ( ( X  e.  A  /\  R Se  A )  /\  Y  e.  TrPred ( R ,  A ,  X
) )  ->  TrPred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) )
1312ex 434 1  |-  ( ( X  e.  A  /\  R Se  A )  ->  ( Y  e.  TrPred ( R ,  A ,  X
)  ->  TrPred ( R ,  A ,  Y
)  C_  TrPred ( R ,  A ,  X
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    e. wcel 1762   A.wral 2807   _Vcvv 3106    C_ wss 3469   Se wse 4829   Predcpred 28806   TrPredctrpred 28863
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-se 4832  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-om 6672  df-recs 7032  df-rdg 7066  df-pred 28807  df-trpred 28864
This theorem is referenced by:  dftrpred3g  28879
  Copyright terms: Public domain W3C validator