Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval2 Structured version   Unicode version

Theorem trlval2 34834
Description: The value of the trace of a lattice translation, given any atom  P not under the fiducial co-atom  W. Note: this requires only the weaker assumption  K  e.  Lat; we use  K  e.  HL for convenience. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlval2.l  |-  .<_  =  ( le `  K )
trlval2.j  |-  .\/  =  ( join `  K )
trlval2.m  |-  ./\  =  ( meet `  K )
trlval2.a  |-  A  =  ( Atoms `  K )
trlval2.h  |-  H  =  ( LHyp `  K
)
trlval2.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlval2.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlval2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)

Proof of Theorem trlval2
Dummy variables  x  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 34035 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
21anim1i 568 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  Lat  /\  W  e.  H ) )
3 eqid 2460 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
4 trlval2.l . . . . 5  |-  .<_  =  ( le `  K )
5 trlval2.j . . . . 5  |-  .\/  =  ( join `  K )
6 trlval2.m . . . . 5  |-  ./\  =  ( meet `  K )
7 trlval2.a . . . . 5  |-  A  =  ( Atoms `  K )
8 trlval2.h . . . . 5  |-  H  =  ( LHyp `  K
)
9 trlval2.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlval2.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
113, 4, 5, 6, 7, 8, 9, 10trlval 34833 . . . 4  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  =  (
iota_ x  e.  ( Base `  K ) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) ) )
12113adant3 1011 . . 3  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  (
iota_ x  e.  ( Base `  K ) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) ) )
13 simp1l 1015 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
14 simp3l 1019 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
153, 7atbase 33961 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1614, 15syl 16 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
173, 8, 9ltrncl 34796 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( F `  P )  e.  (
Base `  K )
)
1816, 17syld3an3 1268 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  (
Base `  K )
)
193, 5latjcl 15527 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
2013, 16, 18, 19syl3anc 1223 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
)
21 simp1r 1016 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
223, 8lhpbase 34669 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2321, 22syl 16 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
243, 6latmcl 15528 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  e.  ( Base `  K ) )
2513, 20, 23, 24syl3anc 1223 . . . 4  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  e.  ( Base `  K ) )
26 simpl3l 1046 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  P  e.  A )
27 simpl3r 1047 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  -.  P  .<_  W )
28 breq1 4443 . . . . . . . . . 10  |-  ( q  =  P  ->  (
q  .<_  W  <->  P  .<_  W ) )
2928notbid 294 . . . . . . . . 9  |-  ( q  =  P  ->  ( -.  q  .<_  W  <->  -.  P  .<_  W ) )
30 id 22 . . . . . . . . . . . 12  |-  ( q  =  P  ->  q  =  P )
31 fveq2 5857 . . . . . . . . . . . 12  |-  ( q  =  P  ->  ( F `  q )  =  ( F `  P ) )
3230, 31oveq12d 6293 . . . . . . . . . . 11  |-  ( q  =  P  ->  (
q  .\/  ( F `  q ) )  =  ( P  .\/  ( F `  P )
) )
3332oveq1d 6290 . . . . . . . . . 10  |-  ( q  =  P  ->  (
( q  .\/  ( F `  q )
)  ./\  W )  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )
3433eqeq2d 2474 . . . . . . . . 9  |-  ( q  =  P  ->  (
x  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W )  <->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) )
3529, 34imbi12d 320 . . . . . . . 8  |-  ( q  =  P  ->  (
( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  <->  ( -.  P  .<_  W  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) ) )
3635rspcv 3203 . . . . . . 7  |-  ( P  e.  A  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  ->  ( -.  P  .<_  W  ->  x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) ) ) )
3736com23 78 . . . . . 6  |-  ( P  e.  A  ->  ( -.  P  .<_  W  -> 
( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
)  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) ) )
3826, 27, 37sylc 60 . . . . 5  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) )
39 simp11 1021 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  ( K  e.  Lat  /\  W  e.  H ) )
40 simp12 1022 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  F  e.  T )
41 simp13l 1106 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  P  e.  A )
42 simp13r 1107 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  -.  P  .<_  W )
43 simp3 993 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  q  e.  A )
44 simp2 992 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  -.  q  .<_  W )
454, 5, 6, 7, 8, 9ltrnu 34792 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( q  e.  A  /\  -.  q  .<_  W ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
4639, 40, 41, 42, 43, 44, 45syl222anc 1239 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  (
( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
47 eqeq2 2475 . . . . . . . . . . 11  |-  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  <->  x  =  (
( q  .\/  ( F `  q )
)  ./\  W )
) )
4847biimpd 207 . . . . . . . . . 10  |-  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
) )
4946, 48syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  (
x  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W )  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) )
50493exp 1190 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( -.  q  .<_  W  ->  (
q  e.  A  -> 
( x  =  ( ( P  .\/  ( F `  P )
)  ./\  W )  ->  x  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) ) )
5150com24 87 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  ( q  e.  A  ->  ( -.  q  .<_  W  ->  x  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
5251ralrimdv 2873 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) )
5352adantr 465 . . . . 5  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  (
x  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W )  ->  A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
) ) )
5438, 53impbid 191 . . . 4  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  <->  x  =  (
( P  .\/  ( F `  P )
)  ./\  W )
) )
5525, 54riota5 6262 . . 3  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( iota_ x  e.  ( Base `  K
) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
) )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
5612, 55eqtrd 2501 . 2  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
572, 56syl3an1 1256 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   A.wral 2807   class class class wbr 4440   ` cfv 5579   iota_crio 6235  (class class class)co 6275   Basecbs 14479   lecple 14551   joincjn 15420   meetcmee 15421   Latclat 15521   Atomscatm 33935   HLchlt 34022   LHypclh 34655   LTrncltrn 34772   trLctrl 34829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-rep 4551  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-ral 2812  df-rex 2813  df-reu 2814  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-op 4027  df-uni 4239  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-id 4788  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-map 7412  df-lub 15450  df-glb 15451  df-join 15452  df-meet 15453  df-lat 15522  df-ats 33939  df-atl 33970  df-cvlat 33994  df-hlat 34023  df-lhyp 34659  df-laut 34660  df-ldil 34775  df-ltrn 34776  df-trl 34830
This theorem is referenced by:  trlcl  34835  trlcnv  34836  trljat1  34837  trljat2  34838  trlat  34840  trl0  34841  trlle  34855  trlval3  34858  trlval5  34860  cdlemd6  34874  cdlemf  35234  cdlemg4a  35279  cdlemg4b1  35280  cdlemg4b2  35281  cdlemg4  35288  cdlemg11b  35313  cdlemg13a  35322  cdlemg13  35323  cdlemg17a  35332  cdlemg17dN  35334  cdlemg17e  35336  cdlemg17f  35337  trlcoabs2N  35393  trlcolem  35397  cdlemg42  35400  cdlemg43  35401  cdlemi1  35489  cdlemk4  35505  cdlemk39  35587  dia2dimlem1  35736  dia2dimlem2  35737  dia2dimlem3  35738  cdlemm10N  35790  cdlemn2  35867  cdlemn10  35878  dihjatcclem3  36092
  Copyright terms: Public domain W3C validator