Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval2 Structured version   Unicode version

Theorem trlval2 33807
Description: The value of the trace of a lattice translation, given any atom  P not under the fiducial co-atom  W. Note: this requires only the weaker assumption  K  e.  Lat; we use  K  e.  HL for convenience. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlval2.l  |-  .<_  =  ( le `  K )
trlval2.j  |-  .\/  =  ( join `  K )
trlval2.m  |-  ./\  =  ( meet `  K )
trlval2.a  |-  A  =  ( Atoms `  K )
trlval2.h  |-  H  =  ( LHyp `  K
)
trlval2.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlval2.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlval2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)

Proof of Theorem trlval2
Dummy variables  x  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 33008 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
21anim1i 568 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  Lat  /\  W  e.  H ) )
3 eqid 2443 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
4 trlval2.l . . . . 5  |-  .<_  =  ( le `  K )
5 trlval2.j . . . . 5  |-  .\/  =  ( join `  K )
6 trlval2.m . . . . 5  |-  ./\  =  ( meet `  K )
7 trlval2.a . . . . 5  |-  A  =  ( Atoms `  K )
8 trlval2.h . . . . 5  |-  H  =  ( LHyp `  K
)
9 trlval2.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlval2.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
113, 4, 5, 6, 7, 8, 9, 10trlval 33806 . . . 4  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  =  (
iota_ x  e.  ( Base `  K ) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) ) )
12113adant3 1008 . . 3  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  (
iota_ x  e.  ( Base `  K ) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) ) )
13 simp1l 1012 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
14 simp3l 1016 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
153, 7atbase 32934 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1614, 15syl 16 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
173, 8, 9ltrncl 33769 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( F `  P )  e.  (
Base `  K )
)
1816, 17syld3an3 1263 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  (
Base `  K )
)
193, 5latjcl 15221 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
2013, 16, 18, 19syl3anc 1218 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
)
21 simp1r 1013 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
223, 8lhpbase 33642 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2321, 22syl 16 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
243, 6latmcl 15222 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  e.  ( Base `  K ) )
2513, 20, 23, 24syl3anc 1218 . . . 4  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  e.  ( Base `  K ) )
26 simpl3l 1043 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  P  e.  A )
27 simpl3r 1044 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  -.  P  .<_  W )
28 breq1 4295 . . . . . . . . . 10  |-  ( q  =  P  ->  (
q  .<_  W  <->  P  .<_  W ) )
2928notbid 294 . . . . . . . . 9  |-  ( q  =  P  ->  ( -.  q  .<_  W  <->  -.  P  .<_  W ) )
30 id 22 . . . . . . . . . . . 12  |-  ( q  =  P  ->  q  =  P )
31 fveq2 5691 . . . . . . . . . . . 12  |-  ( q  =  P  ->  ( F `  q )  =  ( F `  P ) )
3230, 31oveq12d 6109 . . . . . . . . . . 11  |-  ( q  =  P  ->  (
q  .\/  ( F `  q ) )  =  ( P  .\/  ( F `  P )
) )
3332oveq1d 6106 . . . . . . . . . 10  |-  ( q  =  P  ->  (
( q  .\/  ( F `  q )
)  ./\  W )  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )
3433eqeq2d 2454 . . . . . . . . 9  |-  ( q  =  P  ->  (
x  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W )  <->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) )
3529, 34imbi12d 320 . . . . . . . 8  |-  ( q  =  P  ->  (
( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  <->  ( -.  P  .<_  W  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) ) )
3635rspcv 3069 . . . . . . 7  |-  ( P  e.  A  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  ->  ( -.  P  .<_  W  ->  x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) ) ) )
3736com23 78 . . . . . 6  |-  ( P  e.  A  ->  ( -.  P  .<_  W  -> 
( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
)  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) ) )
3826, 27, 37sylc 60 . . . . 5  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) )
39 simp11 1018 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  ( K  e.  Lat  /\  W  e.  H ) )
40 simp12 1019 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  F  e.  T )
41 simp13l 1103 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  P  e.  A )
42 simp13r 1104 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  -.  P  .<_  W )
43 simp3 990 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  q  e.  A )
44 simp2 989 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  -.  q  .<_  W )
454, 5, 6, 7, 8, 9ltrnu 33765 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( q  e.  A  /\  -.  q  .<_  W ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
4639, 40, 41, 42, 43, 44, 45syl222anc 1234 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  (
( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
47 eqeq2 2452 . . . . . . . . . . 11  |-  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  <->  x  =  (
( q  .\/  ( F `  q )
)  ./\  W )
) )
4847biimpd 207 . . . . . . . . . 10  |-  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
) )
4946, 48syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  (
x  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W )  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) )
50493exp 1186 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( -.  q  .<_  W  ->  (
q  e.  A  -> 
( x  =  ( ( P  .\/  ( F `  P )
)  ./\  W )  ->  x  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) ) )
5150com24 87 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  ( q  e.  A  ->  ( -.  q  .<_  W  ->  x  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
5251ralrimdv 2805 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) )
5352adantr 465 . . . . 5  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  (
x  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W )  ->  A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
) ) )
5438, 53impbid 191 . . . 4  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  <->  x  =  (
( P  .\/  ( F `  P )
)  ./\  W )
) )
5525, 54riota5 6078 . . 3  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( iota_ x  e.  ( Base `  K
) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
) )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
5612, 55eqtrd 2475 . 2  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
572, 56syl3an1 1251 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756   A.wral 2715   class class class wbr 4292   ` cfv 5418   iota_crio 6051  (class class class)co 6091   Basecbs 14174   lecple 14245   joincjn 15114   meetcmee 15115   Latclat 15215   Atomscatm 32908   HLchlt 32995   LHypclh 33628   LTrncltrn 33745   trLctrl 33802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-rep 4403  ax-sep 4413  ax-nul 4421  ax-pow 4470  ax-pr 4531  ax-un 6372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2568  df-ne 2608  df-ral 2720  df-rex 2721  df-reu 2722  df-rab 2724  df-v 2974  df-sbc 3187  df-csb 3289  df-dif 3331  df-un 3333  df-in 3335  df-ss 3342  df-nul 3638  df-if 3792  df-pw 3862  df-sn 3878  df-pr 3880  df-op 3884  df-uni 4092  df-iun 4173  df-br 4293  df-opab 4351  df-mpt 4352  df-id 4636  df-xp 4846  df-rel 4847  df-cnv 4848  df-co 4849  df-dm 4850  df-rn 4851  df-res 4852  df-ima 4853  df-iota 5381  df-fun 5420  df-fn 5421  df-f 5422  df-f1 5423  df-fo 5424  df-f1o 5425  df-fv 5426  df-riota 6052  df-ov 6094  df-oprab 6095  df-mpt2 6096  df-map 7216  df-lub 15144  df-glb 15145  df-join 15146  df-meet 15147  df-lat 15216  df-ats 32912  df-atl 32943  df-cvlat 32967  df-hlat 32996  df-lhyp 33632  df-laut 33633  df-ldil 33748  df-ltrn 33749  df-trl 33803
This theorem is referenced by:  trlcl  33808  trlcnv  33809  trljat1  33810  trljat2  33811  trlat  33813  trl0  33814  trlle  33828  trlval3  33831  trlval5  33833  cdlemd6  33847  cdlemf  34207  cdlemg4a  34252  cdlemg4b1  34253  cdlemg4b2  34254  cdlemg4  34261  cdlemg11b  34286  cdlemg13a  34295  cdlemg13  34296  cdlemg17a  34305  cdlemg17dN  34307  cdlemg17e  34309  cdlemg17f  34310  trlcoabs2N  34366  trlcolem  34370  cdlemg42  34373  cdlemg43  34374  cdlemi1  34462  cdlemk4  34478  cdlemk39  34560  dia2dimlem1  34709  dia2dimlem2  34710  dia2dimlem3  34711  cdlemm10N  34763  cdlemn2  34840  cdlemn10  34851  dihjatcclem3  35065
  Copyright terms: Public domain W3C validator