Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  trlval2 Structured version   Unicode version

Theorem trlval2 35628
Description: The value of the trace of a lattice translation, given any atom  P not under the fiducial co-atom  W. Note: this requires only the weaker assumption  K  e.  Lat; we use  K  e.  HL for convenience. (Contributed by NM, 20-May-2012.)
Hypotheses
Ref Expression
trlval2.l  |-  .<_  =  ( le `  K )
trlval2.j  |-  .\/  =  ( join `  K )
trlval2.m  |-  ./\  =  ( meet `  K )
trlval2.a  |-  A  =  ( Atoms `  K )
trlval2.h  |-  H  =  ( LHyp `  K
)
trlval2.t  |-  T  =  ( ( LTrn `  K
) `  W )
trlval2.r  |-  R  =  ( ( trL `  K
) `  W )
Assertion
Ref Expression
trlval2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)

Proof of Theorem trlval2
Dummy variables  x  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hllat 34828 . . 3  |-  ( K  e.  HL  ->  K  e.  Lat )
21anim1i 568 . 2  |-  ( ( K  e.  HL  /\  W  e.  H )  ->  ( K  e.  Lat  /\  W  e.  H ) )
3 eqid 2443 . . . . 5  |-  ( Base `  K )  =  (
Base `  K )
4 trlval2.l . . . . 5  |-  .<_  =  ( le `  K )
5 trlval2.j . . . . 5  |-  .\/  =  ( join `  K )
6 trlval2.m . . . . 5  |-  ./\  =  ( meet `  K )
7 trlval2.a . . . . 5  |-  A  =  ( Atoms `  K )
8 trlval2.h . . . . 5  |-  H  =  ( LHyp `  K
)
9 trlval2.t . . . . 5  |-  T  =  ( ( LTrn `  K
) `  W )
10 trlval2.r . . . . 5  |-  R  =  ( ( trL `  K
) `  W )
113, 4, 5, 6, 7, 8, 9, 10trlval 35627 . . . 4  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T
)  ->  ( R `  F )  =  (
iota_ x  e.  ( Base `  K ) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) ) )
12113adant3 1017 . . 3  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  (
iota_ x  e.  ( Base `  K ) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) ) )
13 simp1l 1021 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  K  e.  Lat )
14 simp3l 1025 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  A )
153, 7atbase 34754 . . . . . . 7  |-  ( P  e.  A  ->  P  e.  ( Base `  K
) )
1614, 15syl 16 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  P  e.  ( Base `  K )
)
173, 8, 9ltrncl 35589 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  P  e.  ( Base `  K ) )  ->  ( F `  P )  e.  (
Base `  K )
)
1816, 17syld3an3 1274 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( F `  P )  e.  (
Base `  K )
)
193, 5latjcl 15659 . . . . . 6  |-  ( ( K  e.  Lat  /\  P  e.  ( Base `  K )  /\  ( F `  P )  e.  ( Base `  K
) )  ->  ( P  .\/  ( F `  P ) )  e.  ( Base `  K
) )
2013, 16, 18, 19syl3anc 1229 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( P  .\/  ( F `  P
) )  e.  (
Base `  K )
)
21 simp1r 1022 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  H )
223, 8lhpbase 35462 . . . . . 6  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2321, 22syl 16 . . . . 5  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  W  e.  ( Base `  K )
)
243, 6latmcl 15660 . . . . 5  |-  ( ( K  e.  Lat  /\  ( P  .\/  ( F `
 P ) )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  e.  ( Base `  K ) )
2513, 20, 23, 24syl3anc 1229 . . . 4  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( ( P  .\/  ( F `  P ) )  ./\  W )  e.  ( Base `  K ) )
26 simpl3l 1052 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  P  e.  A )
27 simpl3r 1053 . . . . . 6  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  -.  P  .<_  W )
28 breq1 4440 . . . . . . . . . 10  |-  ( q  =  P  ->  (
q  .<_  W  <->  P  .<_  W ) )
2928notbid 294 . . . . . . . . 9  |-  ( q  =  P  ->  ( -.  q  .<_  W  <->  -.  P  .<_  W ) )
30 id 22 . . . . . . . . . . . 12  |-  ( q  =  P  ->  q  =  P )
31 fveq2 5856 . . . . . . . . . . . 12  |-  ( q  =  P  ->  ( F `  q )  =  ( F `  P ) )
3230, 31oveq12d 6299 . . . . . . . . . . 11  |-  ( q  =  P  ->  (
q  .\/  ( F `  q ) )  =  ( P  .\/  ( F `  P )
) )
3332oveq1d 6296 . . . . . . . . . 10  |-  ( q  =  P  ->  (
( q  .\/  ( F `  q )
)  ./\  W )  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) )
3433eqeq2d 2457 . . . . . . . . 9  |-  ( q  =  P  ->  (
x  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W )  <->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) )
3529, 34imbi12d 320 . . . . . . . 8  |-  ( q  =  P  ->  (
( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  <->  ( -.  P  .<_  W  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) ) )
3635rspcv 3192 . . . . . . 7  |-  ( P  e.  A  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  ->  ( -.  P  .<_  W  ->  x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W ) ) ) )
3736com23 78 . . . . . 6  |-  ( P  e.  A  ->  ( -.  P  .<_  W  -> 
( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
)  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) ) )
3826, 27, 37sylc 60 . . . . 5  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  ->  x  =  ( ( P  .\/  ( F `  P ) )  ./\  W )
) )
39 simp11 1027 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  ( K  e.  Lat  /\  W  e.  H ) )
40 simp12 1028 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  F  e.  T )
41 simp13l 1112 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  P  e.  A )
42 simp13r 1113 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  -.  P  .<_  W )
43 simp3 999 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  q  e.  A )
44 simp2 998 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  -.  q  .<_  W )
454, 5, 6, 7, 8, 9ltrnu 35585 . . . . . . . . . . 11  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( q  e.  A  /\  -.  q  .<_  W ) )  -> 
( ( P  .\/  ( F `  P ) )  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
4639, 40, 41, 42, 43, 44, 45syl222anc 1245 . . . . . . . . . 10  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  (
( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) )
47 eqeq2 2458 . . . . . . . . . . 11  |-  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  <->  x  =  (
( q  .\/  ( F `  q )
)  ./\  W )
) )
4847biimpd 207 . . . . . . . . . 10  |-  ( ( ( P  .\/  ( F `  P )
)  ./\  W )  =  ( ( q 
.\/  ( F `  q ) )  ./\  W )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
) )
4946, 48syl 16 . . . . . . . . 9  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  -.  q  .<_  W  /\  q  e.  A )  ->  (
x  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W )  ->  x  =  ( (
q  .\/  ( F `  q ) )  ./\  W ) ) )
50493exp 1196 . . . . . . . 8  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( -.  q  .<_  W  ->  (
q  e.  A  -> 
( x  =  ( ( P  .\/  ( F `  P )
)  ./\  W )  ->  x  =  ( ( q  .\/  ( F `
 q ) ) 
./\  W ) ) ) ) )
5150com24 87 . . . . . . 7  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  ( q  e.  A  ->  ( -.  q  .<_  W  ->  x  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) ) )
5251ralrimdv 2859 . . . . . 6  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( x  =  ( ( P 
.\/  ( F `  P ) )  ./\  W )  ->  A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q 
.\/  ( F `  q ) )  ./\  W ) ) ) )
5352adantr 465 . . . . 5  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  (
x  =  ( ( P  .\/  ( F `
 P ) ) 
./\  W )  ->  A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
) ) )
5438, 53impbid 191 . . . 4  |-  ( ( ( ( K  e. 
Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  /\  x  e.  ( Base `  K
) )  ->  ( A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q )
)  ./\  W )
)  <->  x  =  (
( P  .\/  ( F `  P )
)  ./\  W )
) )
5525, 54riota5 6268 . . 3  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( iota_ x  e.  ( Base `  K
) A. q  e.  A  ( -.  q  .<_  W  ->  x  =  ( ( q  .\/  ( F `  q ) )  ./\  W )
) )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
5612, 55eqtrd 2484 . 2  |-  ( ( ( K  e.  Lat  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
572, 56syl3an1 1262 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  F  e.  T  /\  ( P  e.  A  /\  -.  P  .<_  W ) )  ->  ( R `  F )  =  ( ( P  .\/  ( F `  P )
)  ./\  W )
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 974    = wceq 1383    e. wcel 1804   A.wral 2793   class class class wbr 4437   ` cfv 5578   iota_crio 6241  (class class class)co 6281   Basecbs 14613   lecple 14685   joincjn 15551   meetcmee 15552   Latclat 15653   Atomscatm 34728   HLchlt 34815   LHypclh 35448   LTrncltrn 35565   trLctrl 35623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-8 1806  ax-9 1808  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421  ax-rep 4548  ax-sep 4558  ax-nul 4566  ax-pow 4615  ax-pr 4676  ax-un 6577
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 976  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-eu 2272  df-mo 2273  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-ne 2640  df-ral 2798  df-rex 2799  df-reu 2800  df-rab 2802  df-v 3097  df-sbc 3314  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3771  df-if 3927  df-pw 3999  df-sn 4015  df-pr 4017  df-op 4021  df-uni 4235  df-iun 4317  df-br 4438  df-opab 4496  df-mpt 4497  df-id 4785  df-xp 4995  df-rel 4996  df-cnv 4997  df-co 4998  df-dm 4999  df-rn 5000  df-res 5001  df-ima 5002  df-iota 5541  df-fun 5580  df-fn 5581  df-f 5582  df-f1 5583  df-fo 5584  df-f1o 5585  df-fv 5586  df-riota 6242  df-ov 6284  df-oprab 6285  df-mpt2 6286  df-map 7424  df-lub 15582  df-glb 15583  df-join 15584  df-meet 15585  df-lat 15654  df-ats 34732  df-atl 34763  df-cvlat 34787  df-hlat 34816  df-lhyp 35452  df-laut 35453  df-ldil 35568  df-ltrn 35569  df-trl 35624
This theorem is referenced by:  trlcl  35629  trlcnv  35630  trljat1  35631  trljat2  35632  trlat  35634  trl0  35635  trlle  35649  trlval3  35652  trlval5  35654  cdlemd6  35668  cdlemf  36029  cdlemg4a  36074  cdlemg4b1  36075  cdlemg4b2  36076  cdlemg4  36083  cdlemg11b  36108  cdlemg13a  36117  cdlemg13  36118  cdlemg17a  36127  cdlemg17dN  36129  cdlemg17e  36131  cdlemg17f  36132  trlcoabs2N  36188  trlcolem  36192  cdlemg42  36195  cdlemg43  36196  cdlemi1  36284  cdlemk4  36300  cdlemk39  36382  dia2dimlem1  36531  dia2dimlem2  36532  dia2dimlem3  36533  cdlemm10N  36585  cdlemn2  36662  cdlemn10  36673  dihjatcclem3  36887
  Copyright terms: Public domain W3C validator