MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlonprop Structured version   Unicode version

Theorem trlonprop 23613
Description: Properties of a trail between two vertices. (Contributed by Alexander van der Vekens, 5-Nov-2017.) (Proof shortened by Alexander van der Vekens, 16-Dec-2017.)
Assertion
Ref Expression
trlonprop  |-  ( F ( A ( V TrailOn  E ) B ) P  ->  ( (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  /\  ( F ( A ( V WalkOn  E ) B ) P  /\  F
( V Trails  E ) P ) ) )

Proof of Theorem trlonprop
Dummy variables  a 
b  e  f  p  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-trlon 23594 . . 3  |- TrailOn  =  ( v  e.  _V , 
e  e.  _V  |->  ( a  e.  v ,  b  e.  v  |->  {
<. f ,  p >.  |  ( f ( a ( v WalkOn  e ) b ) p  /\  f ( v Trails  e
) p ) } ) )
2 oveq12 6212 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v WalkOn  e )  =  ( V WalkOn  E
) )
32oveqd 6220 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a ( v WalkOn 
e ) b )  =  ( a ( V WalkOn  E ) b ) )
43breqd 4414 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( a ( v WalkOn  e ) b ) p  <->  f (
a ( V WalkOn  E
) b ) p ) )
5 oveq12 6212 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v Trails  e )  =  ( V Trails  E
) )
65breqd 4414 . . . 4  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( v Trails 
e ) p  <->  f ( V Trails  E ) p ) )
74, 6anbi12d 710 . . 3  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( f ( a ( v WalkOn  e
) b ) p  /\  f ( v Trails 
e ) p )  <-> 
( f ( a ( V WalkOn  E ) b ) p  /\  f ( V Trails  E
) p ) ) )
8 trlon 23611 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( A ( V TrailOn  E
) B )  =  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V Trails  E ) p ) } )
91, 7, 8bropopvvv 6766 . 2  |-  ( F ( A ( V TrailOn  E ) B ) P  ->  ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
) )
10 istrlon 23612 . . . 4  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F ( A ( V TrailOn  E ) B ) P  <->  ( F ( A ( V WalkOn  E
) B ) P  /\  F ( V Trails  E ) P ) ) )
1110biimpd 207 . . 3  |-  ( ( ( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  ->  ( F ( A ( V TrailOn  E ) B ) P  ->  ( F
( A ( V WalkOn  E ) B ) P  /\  F ( V Trails  E ) P ) ) )
1211imdistani 690 . 2  |-  ( ( ( ( V  e. 
_V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V )
)  /\  F ( A ( V TrailOn  E
) B ) P )  ->  ( (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  /\  ( F ( A ( V WalkOn  E ) B ) P  /\  F
( V Trails  E ) P ) ) )
139, 12mpancom 669 1  |-  ( F ( A ( V TrailOn  E ) B ) P  ->  ( (
( V  e.  _V  /\  E  e.  _V )  /\  ( F  e.  _V  /\  P  e.  _V )  /\  ( A  e.  V  /\  B  e.  V
) )  /\  ( F ( A ( V WalkOn  E ) B ) P  /\  F
( V Trails  E ) P ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758   _Vcvv 3078   class class class wbr 4403  (class class class)co 6203   Trails ctrail 23578   WalkOn cwlkon 23581   TrailOn ctrlon 23582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432  ax-rep 4514  ax-sep 4524  ax-nul 4532  ax-pow 4581  ax-pr 4642  ax-un 6485  ax-cnex 9452  ax-resscn 9453  ax-1cn 9454  ax-icn 9455  ax-addcl 9456  ax-addrcl 9457  ax-mulcl 9458  ax-mulrcl 9459  ax-mulcom 9460  ax-addass 9461  ax-mulass 9462  ax-distr 9463  ax-i2m1 9464  ax-1ne0 9465  ax-1rid 9466  ax-rnegex 9467  ax-rrecex 9468  ax-cnre 9469  ax-pre-lttri 9470  ax-pre-lttrn 9471  ax-pre-ltadd 9472  ax-pre-mulgt0 9473
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2266  df-mo 2267  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-nel 2651  df-ral 2804  df-rex 2805  df-reu 2806  df-rab 2808  df-v 3080  df-sbc 3295  df-csb 3399  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-pss 3455  df-nul 3749  df-if 3903  df-pw 3973  df-sn 3989  df-pr 3991  df-tp 3993  df-op 3995  df-uni 4203  df-int 4240  df-iun 4284  df-br 4404  df-opab 4462  df-mpt 4463  df-tr 4497  df-eprel 4743  df-id 4747  df-po 4752  df-so 4753  df-fr 4790  df-we 4792  df-ord 4833  df-on 4834  df-lim 4835  df-suc 4836  df-xp 4957  df-rel 4958  df-cnv 4959  df-co 4960  df-dm 4961  df-rn 4962  df-res 4963  df-ima 4964  df-iota 5492  df-fun 5531  df-fn 5532  df-f 5533  df-f1 5534  df-fo 5535  df-f1o 5536  df-fv 5537  df-riota 6164  df-ov 6206  df-oprab 6207  df-mpt2 6208  df-om 6590  df-1st 6690  df-2nd 6691  df-recs 6945  df-rdg 6979  df-1o 7033  df-oadd 7037  df-er 7214  df-map 7329  df-pm 7330  df-en 7424  df-dom 7425  df-sdom 7426  df-fin 7427  df-pnf 9534  df-mnf 9535  df-xr 9536  df-ltxr 9537  df-le 9538  df-sub 9711  df-neg 9712  df-nn 10437  df-n0 10694  df-z 10761  df-uz 10976  df-fz 11558  df-fzo 11669  df-word 12350  df-wlk 23587  df-trail 23588  df-trlon 23594
This theorem is referenced by:  trlonistrl  23614  trlonwlkon  23615
  Copyright terms: Public domain W3C validator