MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlon Structured version   Unicode version

Theorem trlon 23576
Description: The set of trails between two vertices (in an undirected graph). (Contributed by Alexander van der Vekens, 4-Nov-2017.)
Assertion
Ref Expression
trlon  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V TrailOn  E ) B )  =  { <. f ,  p >.  |  (
f ( A ( V WalkOn  E ) B ) p  /\  f
( V Trails  E )
p ) } )
Distinct variable groups:    f, E, p    f, V, p    f, X, p    f, Y, p    A, f, p    B, f, p

Proof of Theorem trlon
Dummy variables  a 
b  e  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3079 . . . . 5  |-  ( V  e.  X  ->  V  e.  _V )
21ad2antrr 725 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  V  e.  _V )
3 elex 3079 . . . . . 6  |-  ( E  e.  Y  ->  E  e.  _V )
43adantl 466 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  E  e.  _V )
54adantr 465 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  E  e.  _V )
6 id 22 . . . . . . 7  |-  ( V  e.  X  ->  V  e.  X )
76ancli 551 . . . . . 6  |-  ( V  e.  X  ->  ( V  e.  X  /\  V  e.  X )
)
87ad2antrr 725 . . . . 5  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( V  e.  X  /\  V  e.  X
) )
9 mpt2exga 6751 . . . . 5  |-  ( ( V  e.  X  /\  V  e.  X )  ->  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E
) b ) p  /\  f ( V Trails  E ) p ) } )  e.  _V )
108, 9syl 16 . . . 4  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E
) b ) p  /\  f ( V Trails  E ) p ) } )  e.  _V )
11 simpl 457 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  v  =  V )
12 oveq12 6201 . . . . . . . . . 10  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v WalkOn  e )  =  ( V WalkOn  E
) )
1312oveqd 6209 . . . . . . . . 9  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a ( v WalkOn 
e ) b )  =  ( a ( V WalkOn  E ) b ) )
1413breqd 4403 . . . . . . . 8  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( a ( v WalkOn  e ) b ) p  <->  f (
a ( V WalkOn  E
) b ) p ) )
15 oveq12 6201 . . . . . . . . 9  |-  ( ( v  =  V  /\  e  =  E )  ->  ( v Trails  e )  =  ( V Trails  E
) )
1615breqd 4403 . . . . . . . 8  |-  ( ( v  =  V  /\  e  =  E )  ->  ( f ( v Trails 
e ) p  <->  f ( V Trails  E ) p ) )
1714, 16anbi12d 710 . . . . . . 7  |-  ( ( v  =  V  /\  e  =  E )  ->  ( ( f ( a ( v WalkOn  e
) b ) p  /\  f ( v Trails 
e ) p )  <-> 
( f ( a ( V WalkOn  E ) b ) p  /\  f ( V Trails  E
) p ) ) )
1817opabbidv 4455 . . . . . 6  |-  ( ( v  =  V  /\  e  =  E )  ->  { <. f ,  p >.  |  ( f ( a ( v WalkOn  e
) b ) p  /\  f ( v Trails 
e ) p ) }  =  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f
( V Trails  E )
p ) } )
1911, 11, 18mpt2eq123dv 6249 . . . . 5  |-  ( ( v  =  V  /\  e  =  E )  ->  ( a  e.  v ,  b  e.  v 
|->  { <. f ,  p >.  |  ( f ( a ( v WalkOn  e
) b ) p  /\  f ( v Trails 
e ) p ) } )  =  ( a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f ( V Trails  E
) p ) } ) )
20 df-trlon 23559 . . . . 5  |- TrailOn  =  ( v  e.  _V , 
e  e.  _V  |->  ( a  e.  v ,  b  e.  v  |->  {
<. f ,  p >.  |  ( f ( a ( v WalkOn  e ) b ) p  /\  f ( v Trails  e
) p ) } ) )
2119, 20ovmpt2ga 6322 . . . 4  |-  ( ( V  e.  _V  /\  E  e.  _V  /\  (
a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f ( V Trails  E
) p ) } )  e.  _V )  ->  ( V TrailOn  E )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  (
f ( a ( V WalkOn  E ) b ) p  /\  f
( V Trails  E )
p ) } ) )
222, 5, 10, 21syl3anc 1219 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( V TrailOn  E )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  (
f ( a ( V WalkOn  E ) b ) p  /\  f
( V Trails  E )
p ) } ) )
2322oveqd 6209 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V TrailOn  E ) B )  =  ( A ( a  e.  V , 
b  e.  V  |->  {
<. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f ( V Trails  E
) p ) } ) B ) )
24 simpl 457 . . . 4  |-  ( ( A  e.  V  /\  B  e.  V )  ->  A  e.  V )
2524adantl 466 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  A  e.  V )
26 simprr 756 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  B  e.  V )
27 ancom 450 . . . . . . 7  |-  ( ( f ( A ( V WalkOn  E ) B ) p  /\  f
( V Trails  E )
p )  <->  ( f
( V Trails  E )
p  /\  f ( A ( V WalkOn  E
) B ) p ) )
2827a1i 11 . . . . . 6  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  ( ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V Trails  E ) p )  <-> 
( f ( V Trails  E ) p  /\  f ( A ( V WalkOn  E ) B ) p ) ) )
2928opabbidv 4455 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V Trails  E ) p ) }  =  { <. f ,  p >.  |  ( f ( V Trails  E
) p  /\  f
( A ( V WalkOn  E ) B ) p ) } )
30 trliswlk 23575 . . . . . . 7  |-  ( f ( V Trails  E ) p  ->  f ( V Walks  E ) p )
3130wlkres 23565 . . . . . 6  |-  ( ( V  e.  _V  /\  E  e.  _V )  ->  { <. f ,  p >.  |  ( f ( V Trails  E ) p  /\  f ( A ( V WalkOn  E ) B ) p ) }  e.  _V )
321, 3, 31syl2an 477 . . . . 5  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. f ,  p >.  |  ( f ( V Trails  E ) p  /\  f ( A ( V WalkOn  E ) B ) p ) }  e.  _V )
3329, 32eqeltrd 2539 . . . 4  |-  ( ( V  e.  X  /\  E  e.  Y )  ->  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V Trails  E ) p ) }  e.  _V )
3433adantr 465 . . 3  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  ->  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E
) B ) p  /\  f ( V Trails  E ) p ) }  e.  _V )
35 oveq12 6201 . . . . . . 7  |-  ( ( a  =  A  /\  b  =  B )  ->  ( a ( V WalkOn  E ) b )  =  ( A ( V WalkOn  E ) B ) )
3635breqd 4403 . . . . . 6  |-  ( ( a  =  A  /\  b  =  B )  ->  ( f ( a ( V WalkOn  E ) b ) p  <->  f ( A ( V WalkOn  E
) B ) p ) )
3736anbi1d 704 . . . . 5  |-  ( ( a  =  A  /\  b  =  B )  ->  ( ( f ( a ( V WalkOn  E
) b ) p  /\  f ( V Trails  E ) p )  <-> 
( f ( A ( V WalkOn  E ) B ) p  /\  f ( V Trails  E
) p ) ) )
3837opabbidv 4455 . . . 4  |-  ( ( a  =  A  /\  b  =  B )  ->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E
) b ) p  /\  f ( V Trails  E ) p ) }  =  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E ) B ) p  /\  f
( V Trails  E )
p ) } )
39 eqid 2451 . . . 4  |-  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f
( V Trails  E )
p ) } )  =  ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  (
f ( a ( V WalkOn  E ) b ) p  /\  f
( V Trails  E )
p ) } )
4038, 39ovmpt2ga 6322 . . 3  |-  ( ( A  e.  V  /\  B  e.  V  /\  {
<. f ,  p >.  |  ( f ( A ( V WalkOn  E ) B ) p  /\  f ( V Trails  E
) p ) }  e.  _V )  -> 
( A ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f
( V Trails  E )
p ) } ) B )  =  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E ) B ) p  /\  f ( V Trails  E
) p ) } )
4125, 26, 34, 40syl3anc 1219 . 2  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( a  e.  V ,  b  e.  V  |->  { <. f ,  p >.  |  ( f ( a ( V WalkOn  E ) b ) p  /\  f
( V Trails  E )
p ) } ) B )  =  { <. f ,  p >.  |  ( f ( A ( V WalkOn  E ) B ) p  /\  f ( V Trails  E
) p ) } )
4223, 41eqtrd 2492 1  |-  ( ( ( V  e.  X  /\  E  e.  Y
)  /\  ( A  e.  V  /\  B  e.  V ) )  -> 
( A ( V TrailOn  E ) B )  =  { <. f ,  p >.  |  (
f ( A ( V WalkOn  E ) B ) p  /\  f
( V Trails  E )
p ) } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3070   class class class wbr 4392   {copab 4449  (class class class)co 6192    |-> cmpt2 6194   Trails ctrail 23543   WalkOn cwlkon 23546   TrailOn ctrlon 23547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4503  ax-sep 4513  ax-nul 4521  ax-pow 4570  ax-pr 4631  ax-un 6474  ax-cnex 9441  ax-resscn 9442  ax-1cn 9443  ax-icn 9444  ax-addcl 9445  ax-addrcl 9446  ax-mulcl 9447  ax-mulrcl 9448  ax-mulcom 9449  ax-addass 9450  ax-mulass 9451  ax-distr 9452  ax-i2m1 9453  ax-1ne0 9454  ax-1rid 9455  ax-rnegex 9456  ax-rrecex 9457  ax-cnre 9458  ax-pre-lttri 9459  ax-pre-lttrn 9460  ax-pre-ltadd 9461  ax-pre-mulgt0 9462
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3072  df-sbc 3287  df-csb 3389  df-dif 3431  df-un 3433  df-in 3435  df-ss 3442  df-pss 3444  df-nul 3738  df-if 3892  df-pw 3962  df-sn 3978  df-pr 3980  df-tp 3982  df-op 3984  df-uni 4192  df-int 4229  df-iun 4273  df-br 4393  df-opab 4451  df-mpt 4452  df-tr 4486  df-eprel 4732  df-id 4736  df-po 4741  df-so 4742  df-fr 4779  df-we 4781  df-ord 4822  df-on 4823  df-lim 4824  df-suc 4825  df-xp 4946  df-rel 4947  df-cnv 4948  df-co 4949  df-dm 4950  df-rn 4951  df-res 4952  df-ima 4953  df-iota 5481  df-fun 5520  df-fn 5521  df-f 5522  df-f1 5523  df-fo 5524  df-f1o 5525  df-fv 5526  df-riota 6153  df-ov 6195  df-oprab 6196  df-mpt2 6197  df-om 6579  df-1st 6679  df-2nd 6680  df-recs 6934  df-rdg 6968  df-1o 7022  df-oadd 7026  df-er 7203  df-map 7318  df-pm 7319  df-en 7413  df-dom 7414  df-sdom 7415  df-fin 7416  df-pnf 9523  df-mnf 9524  df-xr 9525  df-ltxr 9526  df-le 9527  df-sub 9700  df-neg 9701  df-nn 10426  df-n0 10683  df-z 10750  df-uz 10965  df-fz 11541  df-fzo 11652  df-word 12333  df-wlk 23552  df-trail 23553  df-trlon 23559
This theorem is referenced by:  istrlon  23577  trlonprop  23578
  Copyright terms: Public domain W3C validator